
Department of Informatics
University of Fribourg (Switzerland)

TWICE
A Toolkit for Web-based Interactive Collaborative Environments

Thesis

presented to the Faculty of Science of the University of Fribourg

(Switzerland) in consideration for the award of the academic grade of

Doctor scientiarum informaticarum

by

Oliver Schmid
from

Winterthur ZH, Switzerland

Thesis No: 1790

UniPrint
May 2013

Accepted by the Faculty of Science of the University of Fribourg (Switzerland) upon the
recommendation of

• Prof. Dr. Ulrich Ultes-Nitsche, University of Fribourg, Switzerland (Jury president)

• Prof. Dr. Béat Hirsbrunner, University of Fribourg, Switzerland (Thesis supervisor)

• Prof. Dr. Harald Reiterer, University of Konstanz, Germany (Expert)

• Dr. Agnes Lisowska Masson, University of Fribourg, Switzerland (Expert)

• Dr. Michèle Courant, University of Fribourg, Switzerland (Expert)

Fribourg, 05-14-2013

Thesis supervisor Dean

Prof. Dr. Béat Hirsbrunner Prof. Dr. Fritz Müller

In memory of my father who introduced me to the fascinating world of technology and
inspired me by his drive for innovation. All of my career in academics and industry, and
especially this thesis, would never have been possible without him sharing his passion for

information technology with me.

Acknowledgements

While working on this thesis, I have met many people which have influenced my thoughts,
inspired me, challenged me, supported me in moments of doubts and shared the joy and
enthusiasm when things worked out. Many thanks to all these people who contributed a lot
to the final result as it is presented in this thesis.

My special thanks go to my supervisor Béat Hirsbrunner for giving me the opportunity to
work on this thesis as well as giving me the freedom to explore an interesting topic. Special
thanks go to Agnes Lisowska Masson who was always available for questions and discussions
and who always found new ideas to challenge me. I also want to thank Apostolos Mala-
tras, especially for his appreciated criticism which always drove me to do better. Thanks to
Muriel Bowie who contributed a lot to the basic ideas of the toolkit, as well as to Michèle
Courant for her support as well as her feedback. Many thanks also go to Prof. Dr. Harald
Reiterer for taking part in the jury and sharing his expertise on this subject. I also want
to thank my other friends and colleagues at the Department of Informatics in Fribourg for
their support during these years. In no particular order, my gratitude goes to Denis Lalanne,
Daniel Ostojic, Pascal Bruegger, Caroline Voeffray, Roman Baeriswyl, Maurizio Rigamonti,
Fei Peng, Ammar Halabi, Benjamin Hadorn, Patricio Lerena, Fulvio Frappoli, Amos Brocco,
Mohamed Momouh Khadraoui and Nicolas Juillerat.

For their appreciated collaboration, I want to thank Andreas Sonderegger from the Depart-
ment of Psychology in Fribourg and David Weibel from the Department of Psychology in
Bern as well as their students, who were involved in the collaboration. Special thanks go to
Lorenz Roten who made it possible to do experiments in the Gymnasium Neufeld in Bern and
who supported me by his contagious enthusiasm. My gratitude also goes to my co-workers
at Puzzle ITC and EWB who supported me whenever they could in the job I was working in
parallel doing my thesis and especially to Mark Waber, Thomas Weber and Ruedi Hofer for
providing me with all the flexibility needed in terms of holidays and working hours to make
the combination of the PhD thesis and industrial work possible.

Thanks also to my family who supported me through the whole time and who were always
there when I have needed them. Last but not least my very special thanks go to my girlfriend
Franziska for her love and her tolerance of the nights spent in front of the computer and my
mood regularly switching from frustrated to enthusiastic. Without her support, this thesis
would probably not exist.

i

Abstract

The number of available personal devices (e.g. smart phones, tablets, game consoles, lap-
tops) has increased rapidly in the last years. Their increasing capabilities enable complex
interaction which might – in combination with their mobility and networking functionalities
– lead to spontaneous computer supported collaboration in non-predefined locations. Addi-
tionally, already existing and potentially infrastructurally supported (by the availability of
big screens and wireless networks) collaborative environments (e.g. meeting rooms) can be
extended through the integration of personal devices. The heterogeneity as well as the spon-
taneity of such novel collaborative systems implies multiple challenges in terms of software
engineering which have not been fully overcome yet. Therefore, we developed a toolkit for the
development of collaborative systems based on standard web technologies, which allows to
develop applications which are executable on any device that provides a network connection
and contains an installed web browser without the need to install or configure anything on
this device.

In addition to providing solutions for the fundamental issues of the development of real-
time web applications (e.g. missing bi-directional communication) our toolkit includes con-
cepts, structures and functionalities for the simplified development of multi-user systems
(e.g. multi-pointer and multi-focus extensions) and enables dynamic adaptation of software
functionalities depending on device-dependant specificities (e.g. screen size, input modali-
ties, capabilities). Additionally, the toolkit simplifies development and testing by presenting
concepts to reduce differences in the development process between single- and multi-user
applications. The toolkit therefore not only provides necessary functionalities to execute
extensive research in dynamic collaborative systems, but also builds the base for the de-
velopment of fully functional end-user systems which can support collaboration in everyday
situations.

Although during specification and development of the toolkit our focus was on colocated
synchronous collaboration, we made sure that the technologies and the concepts introduced
are applicable for remote and/or asynchronous collaboration as well.

Key words: Computer supported collaboration, web technologies, real-time web applica-
tion, distributed system, multi-user, ad-hoc collaboration

ii

Zusammenfassung

Die Anzahl der verfügbaren persönlichen Geräte (z.B. Smart-Phones, Tablets, Gamekon-
solen, Notebooks) ist in der letzten Zeit rasant angestiegen. Der zunehmende Funktion-
sumfang dieser Geräte ermöglicht komplexe Interaktionen, welche in Kombination mit der
Mobilität und Netzwerkfähigkeit zu spontaner computerunterstützte Kollaboration an nicht
vordefinierten Orten führen kann. Zudem können bereits existierende, u.U. infrastrukturell
unterstützte (Vorhandensein von grossen Bildschirmen und kabellosen Netzwerken) kollab-
orative Einrichtungen (z.B. Meetingräume) durch die Integration persönlicher Geräte dy-
namisch erweitert werden. Mit der Heterogenität sowie der Spontanität mit welcher diese
neuartigen kollaborativen Systeme auftreten können gehen diverse Herausforderungen für
die Software-Entwicklung einher, welche bis anhin nur partiell gelöst sind. Aus diesem
Grund haben wir ein Toolkit für die Entwicklung von kollaborativen Systemen auf der Basis
von Standard Web-Technologien entwickelt, welches es erlaubt Applikationen zu entwickeln,
welche installations- und konfigurationsfrei auf jedem Gerät mit Netzwerkverbindung und
installiertem Web-Browser ausgeführt werden können.

Neben Lösungen für grundlegende Probleme bei der Entwicklung von Echtzeit-Webapplika-
tionen (z.B. bi-direktionale Kommunikation) stellt unser Toolkit Konzepte, Strukturen und
Funktionalitäten für die vereinfachte Entwicklung von Mehr-Benutzer Systemen zur Verfü-
gung (z.B. Multi-Pointer und Multi-Fokus Erweiterungen) und erlaubt es, Funktionalitäten
der Software dynamisch an gerätespezifische Eigenheiten (z.B. Bildschirmgrösse, Eingabe-
modalitäten, Leistungsfähigkeit) anzupassen. Zudem vereinfacht das Toolkit die Entwicklung
und das Testing eines kollaborativen Systems indem es Konzepte aufzeigt um die Unterschiede
im Entwicklungsprozess zwischen Ein- und Mehr-Benutzer-Applikationen zu reduzieren. Das
Toolkit stellt somit nicht nur notwendige Funktionalitäten zur Verfügung um umfangreiche
Forschung in dynamischen kollaborativen Systemen zu betreiben, sondern bietet auch Grund-
lagen zur Entwicklung von voll funktionsfähigen End-Benutzer-Systemen, welche Kollabora-
tion in Alltagssituationen unterstützen können.

Obwohl der Fokus während der Spezifikation und der Entwicklung des Toolkits auf orts-
gleiche synchrone Kollaboration gesetzt wurde, haben wir sichergestellt, dass die verwende-
ten Technologien und Konzepte auch bei entfernten und/oder asynchronen Kollaborationen
angewendet werden kann.

Schlüsselwörter: Computerunterstützte Kollaboration, Web-Technologie, Echtzeit Webap-
plikation, verteilte Systeme, Mehr-Benutzer, Ad-Hoc Kollaboration

iii

Table of Contents

Acknowledgements i

Abstract ii

Zusammenfassung iii

1. Introduction 1

2. State of the art / Related work 6
2.1. Computer supported collaboration . 7

2.1.1. General challenges . 7
2.1.2. Types of collaborative systems . 8
2.1.3. Ad-hoc vs. infrastructure-based collaboration 11
2.1.4. Devices involved . 11
2.1.5. Problem space . 13

2.2. System architecture of distributed systems . 15
2.2.1. System dynamics . 15
2.2.2. System availability . 18
2.2.3. System scalability . 19

2.3. Platform- and device-heterogeneity . 19
2.4. Eventing and synchronization . 22
2.5. Security and privacy . 25
2.6. Interaction with shared devices . 29
2.7. Aspects of user experience . 30

2.7.1. User awareness . 30
2.7.2. Distribution of user interfaces . 30

2.8. Toolkits and solutions for collaborative applications 32
2.8.1. Multi-user / multi-device support . 33
2.8.2. Extension of legacy apps . 34
2.8.3. Communication . 34
2.8.4. Distribution of user interfaces . 35
2.8.5. General toolkits . 35

2.9. Discussion . 36

3. Specification 38
3.1. Context of the work . 39
3.2. Requirements . 39

iv

Table of Contents v

3.2.1. Technology . 39
3.2.2. Software architecture . 42
3.2.3. Basic functionalities . 43

3.3. Choice of technology . 45
3.3.1. Priorization of requirements . 46
3.3.2. Technology candidates . 47
3.3.3. Technology decision . 58
3.3.4. Implications and challenges . 62

3.4. System architecture . 65
3.4.1. Overview . 65
3.4.2. Work load distribution . 67
3.4.3. Server side functionalities . 67
3.4.4. Client side functionalities . 69
3.4.5. Communication . 70
3.4.6. Set-up . 71

3.5. Discussion . 72

4. Toolkit 73
4.1. General concepts . 74

4.1.1. Modules . 74
4.1.2. Coding conventions and concepts . 78

4.2. Basic functionalities . 81
4.2.1. Distributed eventing mechanism . 82
4.2.2. Security . 85
4.2.3. Device grouping . 87
4.2.4. Layouting . 87
4.2.5. Multi-user support . 90
4.2.6. Easy access . 93

4.3. Software modules . 94
4.3.1. Drag and drop . 94
4.3.2. Remote mouse controller . 96
4.3.3. Remote keyboard . 98
4.3.4. Extended widgets for multi-user and multi-device contexts 99
4.3.5. Collaborative web browsing . 102

4.4. Use of the toolkit in practice . 103
4.4.1. Module development . 104

4.5. Comparison with standard GWT . 105
4.6. Discussion . 106

5. Evaluation and real world use 108

Table of Contents vi

5.1. Technical evaluation . 109
5.1.1. Performance . 109
5.1.2. Heterogeneity . 114
5.1.3. Scalability . 115

5.2. In-use evaluation . 116
5.2.1. Initial experiments . 116
5.2.2. A Fitt of distraction . 118
5.2.3. Distributed user interface experiments 119
5.2.4. Computer supported brain storming 121
5.2.5. Usability experiments . 122
5.2.6. Multi-Zoom . 123

5.3. A modular mindmap application . 124
5.3.1. The latest version of the mindmap application 125
5.3.2. Non-integrated components . 127
5.3.3. Modularity in practice . 128

5.4. Real-world experiment: Use in an educational scenario 128
5.5. Developer evaluation of the toolkit . 133
5.6. Discussion . 136

6. Conclusion 138

A. Acronyms 143

B. Resources and extended code extracts 145

C. Website of the Project 152

Bibliography 153

Referenced Web Resources 162

Curriculum Vitae 165

List of Figures

2.1. The CSCW matrix – based on [96] . 8
2.2. The main issues of computer supported collaborative systems and their impact

depending on the characteristics of a system 14
2.3. Separatable GUI components in the example of the image editing software

GIMP [99] . 31

3.1. Comparison matrix for technology candidates 59
3.2. System architectures: Client-server with optional cloud resources (A), peer2peer

(B) and hybrid peer2peer (C) . 66
3.3. Direct communication between clients is not (yet) possible with web technolo-

gies and therefore has to be rerouted by the server 68

4.1. The IDE Eclipse (left) as a template for the design of the dynamic layout for
big screen and cursor oriented devices (right). 88

4.2. The mobile layout of Google+ (left) and the TWICE toolkit’s dynamic layout
(right): The menu button (A) is positioned on the top left and when pressed,
the menu bar (B) appears from the left. 89

4.3. Control of the mouse cursor: A, B and C send the mouse control information
to a server which reroutes them to the shared device. Within the response,
the clients get information about the pixel size of the target screen and about
the color of the pointer which they are controlling 97

4.4. Activity diagram of a multi-focus textbox with two devices (A=red and B=blue)101

5.1. Initial experiments . 117
5.2. A Fitt of distraction – Point-and-select tasks for distraction measurement . . 119
5.3. Distributed user interface experiments . 120
5.4. Brain storming application . 121
5.5. Usability experiments . 122
5.6. Multi-Zoom . 123
5.7. Shared mindmap screen . 126
5.8. Mindmap of the students’ opinions about nuclear power plants 129
5.9. Load of the WLAN interface on the router during the execution of the real-

world use experiment (involving text addition and moving objects) 133

B.1. Results of the original questionnaire in its original version 149
B.2. Translation of the results of the original questionnaire 150
B.3. Results of the user evaluation of the system in the real world use case 151

vii

List of Tables

5.1. SunSpider JavaScript benchmark results of selected devices (total values –
lower values are better) . 112

5.2. Devices tested for basic support of the toolkit 115

viii

List of Code Extracts

4.1. Definition of the property for distinction of implementations in deferred binding 76
4.2. Use of a property for the choice of a device specific implementation 77
4.3. Declarative widget description in GWT . 81
4.4. Binding of the declarative widget description by annotation in GWT 81
4.5. A custom remote event . 86
4.6. Creation of a remote event and firing through the event bus 86
4.7. An example of a draggable widget . 95
4.8. A GWT module descriptor for libraries . 104

B.1. An example POM-file for library components 145
B.2. An example POM-file for module components 147

ix

1
Introduction

The introduction of new devices and device types on the electronics market has continuously
accelerated in recent years and personal consumer devices are now introduced on an almost
daily basis. In Switzerland, in March 2012 48% of the population between 15 and 74 years
of age owned a smartphone (cp. [119]), which is comparable to other industrial countries
(e.g. the USA – cp. [120]). For collaborative settings, this development has a rather big
impact. In ad-hoc scenarios, where people meet spontaneously, they are now equipped with
powerful devices which can support collaborative work. In coordinated collaboration (e.g. in
a meeting room), infrastructural requirements can be relaxed since most of the participants
can be expected to bring their own devices and therefore the hardware infrastructure can
scale dynamically to the amount of users involved if the system supports personal devices.

In addition to the increase of available personal devices, we also find public electronic de-
vices in many locations. In particular, public screens (mostly used for advertisement) are all
around us and – together with wireless network infrastructures which are also widespread –
could also potentially be used for building ad-hoc collaboration.

All the hardware requirements needed for enabling very spontaneous collaboration are there-
fore fulfilled – what is still lacking is the software and the concepts which enable developers
and especially end-users to make proper use of these new opportunities.

The research on computer supported collaborative work has a long tradition and a lot of im-
portant and fundamental work has been contributed by many researchers around the globe.
A lot of their findings, ideas and concepts can be directly applied to the new situation which
has arisen in the last few years (e.g. conflict management strategies, multi-user support, etc.).
Others have to be extended or rethought such as the concept of traditional window-based
user interfaces, solutions for privacy and security, handling of different input modalities, ways
of data representation, etc.

1

2

Focus of the thesis

In light of the new opportunities for spontaneous collaborative work, we have set up an
interdisciplinary project to carry out research on how this type of collaboration could be
supported from a technical perspective (aspects of Software Engineering), how the usability
of such systems can be improved (aspects of UX/HCI) as well as what effects the extension
of collaborative situations with electronic devices has on the collaborative process and users
themselves (aspects of Psychology). This thesis focuses on the technical perspective and
therefore has as its goal to provide a technical solution for the easy development of collabo-
rative systems.

For our context, as well as for supporting novel types of collaboration in general, we think
that the following three challenges are the most important to overcome and therefore they
will be the primary focus of our solution.

Device heterogeneity is implied when integrating personal devices into a collaborative sys-
tem to ensure that no users are excluded from participation because of the lack of support
for their devices. Besides general support (the possibility to connect to and interact with
the system), device hetereogeneity also implies challenges in terms of adaptability to device
specificities such as screen sizes, input modalities and capabilities. To provide appropriate
solutions to overcome device heterogeneity, we therefore not only address the integration of
as many devices as possible into our collaborative system but also provide means to adapt
the software to the specificities of the different devices and/or device-types involved.

Because users might not be willing to follow complex installation and configuration pro-
cedures when they start spontaneous collaborations, “walk-up-and-use” capabilities are
essential for collaborative systems. Since in spontaneous situations no pre-installation of
specific applications on personal devices can be assumed, nor can the installation of them be
enforced, true walk-up-and-use can only be established by relying on default installations and
functionalities of the devices. Our solution therefore will allow the execution of collaborative
applications without installation and/or configuration and therefore support the spontaneity
of ad-hoc collaborations.

As a third main goal, our solution will address the complexity of multi-user and multi-
device application development . With development guidelines and best practices, we will
show how additional complexity of applications involving multiple users and devices can be
diminished and how their development, debugging and testing can be simplified. By reduc-
ing the complexity we will not only be able to flatten the required learning curve for novice
developers but also increase the efficiency of experienced developers and improve software
quality.

3

Since our research group’s project is meant to be long term, future safety and longevity of
the developed code as well as applicability in real-world scenarios are important aspects that
need to be considered. We do not want to build a solution that is only suited for developing
software for research experiments. Our solution should be able to produce applications that
are stable and complex enough for real world use, since this is the most effective way to val-
idate the usefulness of our solution – by applying it in real world cases and getting feedback
from collaborators about their experiences with it in daily life situations.

In this thesis we evaluate potential technology candidates and then show that development
of collaborative applications using web technologies is both appropriate and feasible, and
propose a toolkit for developing collaborative appliations that is based on web technologies.

We present our approach and our concepts to reduce the complexity of the development of
distributed real-time applications, and show how we can profit from code and API reuse. We
also provide – in addition to implementations of the fundamental components of the toolkit –
proof of concept implementations of components useful for typical use cases that arise when
developing collaborative systems. These implementations can be taken as examples of how
further components could be realized, thus extending the functionality of the toolkit.

We do not claim that our solution is complete, but rather that the programming guidelines
and development concepts it provides establish an extensible and improvable modular code
base that can be used to develop collaborative applications for a wide range of scenarios.
While our own work focused on colocated synchronous collaboration, our solution is easily
extensible for remote and/or asynchronous collaboration as well.

Contributions

In addition to the code for the toolkit itself, our main contribution lies in the concepts for
overcoming issues related to heterogeneity and the differences between single- and multi-user
software development. We show why we think that web technologies are the only currently
available technology stack which is flexible enough to provide “walk-up-and-use” functionali-
ties to support even very spontaneous ad-hoc collaborations and provide a proof of concept
which shows that even more complex collaborative applications can be implemented with
today’s web technologies, which fulfill realistic scalability requirements and therefore are ap-
plicable in real world use cases. We also present concepts related to how code can be replaced
dynamically based on device specificities and/or user preferences and how our extended mod-
ule concept makes it easy to add, remove and replace components and implementations for
customizability of collaborative settings.

4

Deliverables

In addition to this thesis, the actual code of the toolkit is available at

http://olinux.github.com/twice/.

This project web page contains the different, elaborated modules as well as the basic structure
of the toolkit, and also includes a documentation section where the technical API specification
(JavaDoc) can be found as well as further tools for bug tracking, discussion and feedback.

Outline of the thesis

The thesis is divided into four main parts. In the “state of the art” section (cp. 2), the
broad concept of computer supported collaborative work as well as the issues that such a
collaborative system implies are presented by giving an overview of the related work that has
been done in this field. A concluding discussion examines the elements that are still lacking
to achieve truly spontaneous collaboration.

In the “specification” section (cp. 3), we present the context of our project and the require-
ments that guided the work during this thesis. We present the arguments which motivated
us to base our toolkit on web technologies and the system architecture analysis that lead us
to structure the code and the distribution of functionalities across the devices involved in the
way we have.

The “toolkit” section (cp. 4) explains the actual realization and the concepts and structures
that are provided by our toolkit. Additionally, we present the basic functionalities, and ex-
amples for additional toolkit components which can be seen as examples for the development
of modules to extend the toolkit and to establish even more complex functionalities.

In the “evaluation” section (cp. 5), we present the different actions we have taken to eval-
uate and therefore validate the different functionalities and requirements that were defined
in the specification phase. We present technical evaluations, as well as different user exper-
iments that were performed with our system, and a case study application which provides
the functionalities for a collaborative mind map solution that was evaluated in a real-world
experiment in an educational setting in a high school class.

Terms and definitions

To improve readability of this thesis we will use the – in our opinion well argumented –
terminology of Kaufman et al.: “We often refer to things involved in a conversation by name,
for instance, Alice and Bob, [. . .]. This is a convenient way of making things unambiguous
with relatively few words, since the pronoun she can be used for Alice and he can be used

5

for Bob. It also avoids [. . .] arguments about whether to use the politically incorrect he, a
confusing she, an awkward he/she or (s)he, an ungrammatical they, an impersonal it, or
an incredibly awkward rewriting to avoid the problem.“. [42, p. 5f]

Terminological uncertainties are either explicitely clarified within the text or in footnotes.
Citations are surrounded by double quotes (“ ”) and written in italic style and code sections
are either presented in a separated listing or by the special code font style to separate them from
standard text.

All trademarks in this document are held by their respective owners.

2
State of the art / Related work

2.1. Computer supported collaboration 7

2.1.1. General challenges . 7

2.1.2. Types of collaborative systems . 8

2.1.3. Ad-hoc vs. infrastructure-based collaboration 11

2.1.4. Devices involved . 11

2.1.5. Problem space . 13

2.2. System architecture of distributed systems 15

2.2.1. System dynamics . 15

2.2.2. System availability . 18

2.2.3. System scalability . 19

2.3. Platform- and device-heterogeneity 19

2.4. Eventing and synchronization . 22

2.5. Security and privacy . 25

2.6. Interaction with shared devices . 29

2.7. Aspects of user experience . 30

2.7.1. User awareness . 30

2.7.2. Distribution of user interfaces . 30

2.8. Toolkits and solutions for collaborative applications 32

2.8.1. Multi-user / multi-device support . 33

2.8.2. Extension of legacy apps . 34

2.8.3. Communication . 34

2.8.4. Distribution of user interfaces . 35

2.8.5. General toolkits . 35

2.9. Discussion . 36

6

2.1. Computer supported collaboration 7

The development of computer supported collaborative applications is still a big challenge.
To simplify the development process and to reduce the effort it takes for a developer to get in
touch with this complex but interesting field of software engineering, we propose a holistic and
dynamic toolkit. After presenting the general issues which are involved when implementing
computer supported collaborative systems, we examine the different aspects (synchronous vs.
asynchronous and colocated vs. remote) these systems could have as well as the implications
that these aspects have on implementation and of which a developer has to be aware. After
the definition of two additional dimensions (ad-hoc vs. infrastructure-based collaboration and
devices involved), an overview of the issues found is presented. The different issues and their
related work are presented before we look at existing toolkits for collaborative systems. At
the end of this chapter we discuss the findings of the state of the art and we show what is
currently missing in order to be able to develop any type of collaborative system in a simple
and highly customizable way.

2.1 Computer supported collaboration

Computer supported collaborative work (CSCW) is the subject of long term research and has
been examined by many different scientific disciplines in terms of its technical as well as
social implications[22].

Most commonly, collaborative systems can either allow multiple users to interact with a
single device (e.g. a standalone digital whiteboard), rely on a single user to control the
system as a representative of a collaborating group (cp. “backseat driver” in [60]) or support
multiple, fully autonomous and non-related devices that are used together for collaboration
(cp. “divide and conquer” and “brute force” in [60]). Although rather simple to realize
technically, such collaborative systems involve several drawbacks in their effectiveness due to
either their lack of parallelism or because they do not allow for an awareness of the other users
actions (cp. [60]). To overcome these restrictions, many advanced collaborative systems allow
the integration of multiple devices and consequently build a distributed system that allows
simultaneous interaction using multiple devices (virtually) executing a single collaborative
application.

2.1.1 General challenges

When developing a distributed collaborative system, many challenges have to be overcome.
In addtion to well-known (mostly technical) problems from the field of distributed systems
such as aspects of system architecture (dynamics, availability, performance), platform- and

2.1. Computer supported collaboration 8

device-heterogeneity and eventing and synchronization (event-ordering, replication of state,
concurrency management, etc.), specific issues arise such as security and privacy (e.g. pro-
tection of private data, shared data of a work group, as well as public data), interaction
with shared devices and aspects of user experience (e.g. distribution of user interfaces, user
awareness).

Depending on the type of collaborative system and the devices involved (influenced by the
available infrastructure and predefined hardware restrictions) these different issues vary in
importance and their implications on the development of such applications.

2.1.2 Types of collaborative systems

Over many years of research, different systems of categorization have been developed for the
different approaches to how collaborative work can be supported by the use of computers
and other electronic devices. Common ways of categorizing computer supported collabora-
tive systems are by the functionalities of the system [11, p. 119ff] or by its focus on the
dimensions communication, coordination and cooperation in the 3C model ([11, p. 125],
[43]). These approaches to categorization are very useful for grouping and comparing con-
crete solutions for collaborative work. Alternatively, the CSCW Matrix , also known as the
Time/Space Groupware Matrix [6, p. 742] categorizes collaborative systems1 by the dimen-
sions time and space (Figure 2.1). Possible characteristics of these dimensions are “at the

Figure 2.1.: The CSCW matrix – based on [96]

same time” (synchronous) or “separated by time” (asynchronous) and “at the same place”
(colocated) or “at different places" (remote) respectively. These categories include several

1Here, the term groupware is used which is more restrictive than CSCW, since the former refers to a concrete
software solution while the latter usually includes all aspects of the field of research. In this context, the two
terms shall be understood as synonyms since the matrix is not restricted to software-technical aspects only.
More about the terminological discussion in [11, p.92].

2.1. Computer supported collaboration 9

important differences between properties of collaborative systems which can seriously affect
the technical realization of the corresponding applications and which should definately be
taken into account when building a holistic development toolkit for all types of collaborative
systems.

Remote vs. colocated collaboration

Spatial separation is about the location of persons within the collaborative space. If they
are physically separated (in another room or on a different continent) this is called remote
collaboration. Colocated collaboration on the other hand takes place if the involved persons
are located in the same place and would be able to communicate without the aid of technology.
Hybrid systems, where work groups (colocated) interact with distant collaborators (remote),
are possible as well and are often called Mixed Presence Groupware (MPG)[78].

The spatial distance between the two parties in a remote collaboration is mostly overcome
by public networks (e.g. the internet) and an external connection is therefore required. In
contrast, in colocated collaboration, a rudimentary infrastructure can be assumed. Although
the technologies applied to enable communication between devices (usually standardized
network protocols) are often the same for colocated as well as for remote scenarios, the
reduced available bandwidth due to the bridging of long distances through public networks
often leads to increased latency for the communication between multiple remote collaboration
sites. Therefore, flexible collaborative applications have to make sure that they adapt the
amount of their communication to the given settings (e.g. by reducing their update intervals).

In terms of usability, requirements for collaborative systems differ depending on whether the
collaboration is colocated or remote. Although the time between an executed action and its
visual representation influences the usability of a system substantially in general (cp. [9], [17],
[29]), this effect is even more important in colocated scenarios since the awareness of the delay
between an action and the system’s reaction can be increased by the user through observation
of the physical space. Additionally, users have different expectations for connections which
are over long distances and those which are very short. They tend to be much more tolerant
of latency and network failures when bridging long physical distances than they are if two
devices communicate with each other in the same room. For collaborative systems, this
means that the latency of system updates can be relaxed much more for remote systems
than for their colocated counterparts.

2.1. Computer supported collaboration 10

Synchronous vs. asynchronous collaboration

Collaborative systems can – aside from their spatial dimension – be distinguished by their
temporal characteristics. While synchronous collaboration happens at a specific time and
multiple users interact with the system simultaneously and react to the actions of other
users, asynchronous collaboration takes place in temporally separated working sessions. One
example of synchronous collaboration is a brain-storming session where users let the inputs
of other participants influence their own ideas. An example of asynchronous collaboration
is the sequential, collaborative elaboration of a document which is edited by one user at a
time. More examples of such asynchronous collaboration systems can be found in [89].

Similarly to the spatial distinction, the temporal characteristics also have substantial effects
on the design of a collaborative system. In particular, the conflict management differs de-
pending on when the users interact with the system. While conflicts in an asynchronous
collaborative system are rather rare and can be prevented by simple locking mechanisms (cp.
[11, p. 191ff]), the extensive use of such strategies would contradict the idea of synchronous
collaboration since in practice only one user would be able to interact at a time. Synchronous
collaboration therefore requires more complex conflict management strategies (cp. 2.4) which
are dependent on the specific collaborative task (e.g. moving elements, editing text, pointing
and highlighting).

Since this conflict handling has to happen in real time and multiple devices are interacting
with the overall system – and are therefore confronted with a distributed system (cp. [45, p.
1ff]) – the performance is very important. A slow or very conservative conflict management
can strongly affect the responsiveness of the system in a negative sense. That is why the
optimal choice of the conflict management strategy plays an important role (cp. [27, p. 207]).

Asynchronous collaboration works only if the state of a system can be stored and is ready
for editing in the future (cp. [14, p. 107]). In contrast, synchronous collaboration basically
exists only at the moment of the interaction. Therefore, results and states of such systems
do not necessarily have to be persisted in the long term (although it could make sense to
store results of synchronous collaborative work). This means, that synchronous systems can
(theoretically) exist without a long term persistence layer, which reduces the complexity
particularly in the context of distributed systems with many devices and missing central
instances (cp. 2.2).

In addition to the mandatory persistence layer, asynchronous collaboration requires a mini-
mal infrastructure since the medium for the persisted data has to be accessible by the different
users. Usually, this is achieved using a database on a central server, but it would be possible
to use mobile storage medias (e.g. flash memory sticks) which can be exchanged between the
different users as well.

2.1. Computer supported collaboration 11

2.1.3 Ad-hoc vs. infrastructure-based collaboration

Besides collaboration in a setting supported by infrastructure (e.g. an existing WiFi, an
internet connection, a shared screen or other preinstalled devices) – as is possible in both
colocated and remote scenarios – a colocated collaboration can (but does not have to) arise
spontaneously (or “ad-hoc”) when people meet: “When two individuals come in close physical
proximity or meet face-to-face their respective spheres overlap enabling their personal mobile
devices to interact. At that point, the devices can exchange information and access each
other’s services” [44, p. 77]. In contrast, remote collaboration is usually less spontaneous
(cp. Kraut et al. in [33, p.137ff]). Although also possible for asynchronous scenarios,
ad-hoc collaboration usually arises in combination with synchronous collaboration. Since
no infrastructure can be expected in such situations, a system supporting the spontaneous
appearance of collaboration has to be able to run on coincidentally available devices – usually
brought by the users – without predefined network connections and system structures.

2.1.4 Devices involved

There are multiple factors that can influence the involved devices in a computer supported
collaborative system. In addition to the spontaneous appearance of a collaborative envi-
ronment and the possible lack of any infrastructural support (cp. 2.1.3), the definition of
required devices for the execution of a specific application, as well as the restriction of de-
vices able to interact with the system, play an important role in the technical realization –
especially in terms of maintaining heterogeneity – of a collaborative environment.

Since the representation of information (especially in synchronous, colocated collaboration)
is a challenge, a solution has to be found which can provide shared information to all users at
the same time. Most systems define a screen which is visible to all participants and therefore
becomes a shared screen (e.g. [83], [88], [26]). Depending on whether the shared screen is
the only display or if there are others (e.g. private devices with visual output capabilities)
integrated into the overall system, such systems are called Single Display Groupware (SDG)
or Multi Display Groupware (MDG) (cp. [84]) respectively. Since the information that is
represented is usually quite numerous and should be visible from different distances, this
shared screen usually has a specific minimal size. Although the existence of such a big screen
is given in many collaborative situations (in particular in meeting rooms), a generic collabo-
rative system should be able to support such a setting but not take such an infrastructure for
granted since colocated collaboration can occur spontaneously at non-predefined locations
(cp. colocated collaboration in 2.1.2). Alternatives to a big shared screen are for example
screens cloned on different devices so that every user can see a copy of the shared area (“What
You See Is What I See" – WYSIWIS – cp. 2.8.4), the dynamic definition of shared resources

2.1. Computer supported collaboration 12

(e.g. a notebook screen is defined to be a shared screen for small work groups) or the combi-
nation of multiple small screens (e.g. multiple tablets) into a bigger shared screen (cp. [52]).

Additionally, existing collaborative systems usually rely on predefined, non-personal input
devices (e.g. keyboards, touch-screens, pointing devices), which are taken for granted as well
[88]. Although this allows for configuration- and installation-free “walk-up and use” of the
system, it restricts spontaneous collaboration and - without the possibility of integration of
additional devices - reduces the number of potential users. Additionally, predefined devices
might be less suited for fulfilling a specific task than available devices (e.g. because they have
been brought into the environment by the users), which would result in sub-optimal use of
available resources and reduce the efficiency of collaboration support.

To reduce the infrastructural requirements for a collaborative setting, personal devices of
users can be integrated into the system. Today, it is common for users to carry smart
phones, tablets, e-readers, notebooks and other electronic devices with them and for those
devices to be brought along to a collaborative session: “Mobile devices like cell phones, PDAs
and wearable computers have become our constant companions that are available wherever we
go.” [44, p. 76]. If personal devices can be integrated into a collaborative systems, then
theoretically this not only allows as many users to participate as there are devices avail-
able, but also implies that the users do not need to get used to an unfamiliar device. They
can profit from personal settings (e.g. keyboard layout, personal touch calibration on smart
phones and tablets, personalized dictionaries for text entry, etc.) as well as from the familiar
interface and interaction modalities of their device(s). The user takes advantage of so called
habituation: “When one uses an interface repeatedly, some frequent physical actions become
reflexive [. . .] The user no longer needs to think consciously about these actions. They’ve
become habitual.” [79, p. 15].

Additionally, the ownership between a user and a device can be seen as a way to implicitly
distinguish between private and public spaces. Since many private devices have their own dis-
plays, private information can be presented on the users own device, while public information
can be shown on non-personal devices – such as those which are part of the infrastructure (if
available) or which are explicitly defined for public access (cp. [20]). Other advantages can
be found in reduced cost of infrastructure (none or only a few devices have to be provided
and maintained) as well as in protection against vandalism since infrastructural resources (if
there are any) can be protected by structural barriers (e.g. positioning of the shared screen
behind glass or mounted on a wall at a non-reachable height).

Since neither the different types of available devices nor the software installed on them is
under control on personal devices, a “walk up and use” functionality that allows the integra-
tion of such devices is quite difficult. Therefore, existing systems which support the use of

2.1. Computer supported collaboration 13

personal devices often require the installation of specific software in advance (e.g. [83]) and
consequently complicate the occurance of spontaneous collaborative situations. This also
reduces the set of supported devices because the specialized software is usually not available
for many different platforms and is therefore not well-suited for a heterogeneous environment.
Additionally, users might not be willing to accept such an installation on their own devices,
since they might not be convinced about the trustworthiness of the software and therefore
decide not to participate in the collaboration: “[. . .] careful users concerned about their pri-
vacy have to make a tradeoff between the functionality offered by an app and its potential for
compromising their privacy.” [15, p. 315]. To allow the “walk up and use” functionality of
a system including non-controlled private devices a technology has to be chosen that neither
requires installations nor configurations and which runs on as many platforms as possible.

2.1.5 Problem space

Although there are many general problems that have to be solved by any type of collabo-
rative system, the importance, as well as the technical impact, of the different issues varies
depending on the characteristics of the system. We have shown that not only the categories of
time and space influence the needs of such an environment but also the fact that the devices
involved may appear spontaneously. The main issues that computer supported collaborative
systems face, and their impact depending on the characteristics of a system are summarized
in Figure 2.2. The dimensions along which the issues are evaluated – in addition to the stan-
dard dimensions of space and time – are the distinction between situations where the devices
involved have been predefined and those where a dynamic set of devices (usually private
devices of users) are supported, as well as if the collaborative situation arises spontaneously
(“ad-hoc”) in a non-defined environment or if it takes place in a predefined location where
infrastructural support is guaranteed.

The system architecture defines the ability of the overall collaborative system to address
changes in the topology of appearing and disappearing devices as well as the influence of
such mobility on the availability of the system and its scaling capabilities depending on the
amount of devices involved. While systems with infrastructure support are less affected,
colocated ad-hoc situations in particular can suffer from these issues.

Platform- and device-heterogeneity are hard to achieve if the system needs to support a
dynamic set of devices and if it is not possible to predefine the different device-types involved.

Eventing and synchronization issues arise when working in synchronous environments.
This is especially true for ad-hoc situations since no central controlling instances (or similar
mechanisms) can be used and therefore more complex synchronization strategies have to be
applied.

2.1. Computer supported collaboration 14

Figure 2.2.: The main issues of computer supported collaborative systems and their impact
depending on the characteristics of a system

Although important in any condition, security and privacy is even more important for
environments with dynamic sets of devices, since private devices can contain sensitive data
that should not be published or accessed during collaborative work. Therefore, users will
be more careful about what they do on private devices than on other devices and have an
increased need for security and privacy.

Interaction with shared devices is mainly an issue of synchronous collaboration (although
it might appear in asynchronous situations as well). While the interaction can be coordi-
nated quite well, if devices are predefined (e.g. remote controllers for a shared screen) the
realization can be simplified, whereas the support of dynamic devices is more complicated
since these devices are not prepared to integrate smoothly.

For aspects of user interfaces, group awareness of users implies issues mainly for syn-
chronous situations since it is much more difficult to increase awareness of parallel executed
actions than it is for sequential ones. Another difference exists between the environments in
terms of location since actions from remote collaborators might have to be extended with
additional information to compensate for a lack of the types of information that users can
get in a colocated context (e.g. by asking other users or observing them to match the actions
in the system with the user who performed them).

To support the presentation of different information on different devices as well as to improve
control over the system for users, distributed user interfaces would be necessary. The
distribution is more complicated for a set of dynamic devices since it is unknown how many
devices are involved and no initial distribution strategy can be defined.

2.2. System architecture of distributed systems 15

It is worth noting that in particular dynamic device support in combination with sponta-
neous, synchronous collaboration (independent from its spatial characteristics) implies the
biggest challenges and the most complex development issues.

2.2 System architecture of distributed systems

“A distributed system is the one that prevents you from working because of the failure of a
machine that you had never heard of.” (L. Lamport – cp. [81, p. 4])

System architectures for the integration of a dynamic number of devices – as is the case
for most computer supported collaborative systems – can be separated by the classical ar-
chitecture categories client-server and peer2peer (cp. [75, p. 36ff]). Intermediate forms of
architectures also exist (e.g. hybrid peer2peer) and the different grades of structuring of these
systems have effects on system dynamics, system availability as well as on system scalability.

This section points out the advantages and disadvantages of the categories of architecture
and presents their suitability for collaborative systems.

2.2.1 System dynamics

“Interactive workspaces will be dynamic. On short time scales, individual devices may be
turned off, wireless devices will enter and exit the room, and pieces of equipment may break
down for periods of minutes, hours or days. On longer time scales workspaces will incremen-
tally evolve rather than being coherently designed and instantiated once and for all. [. . .] It
is not realistic to expect a full-time system administrator to keep a workspace running, and
at the same time users must be allowed to integrate even failure prone devices.” [39]

The dynamics of a system is particularly important if the constellation of devices within a
collaborative session changes frequently. Such changes can, among other reasons, be caused
by the arrival or the departure of a user, by device properties such as the sleep mode to save
energy or by technical restrictions such as network problems.

Client-Server

Classical client-server architectures (cp. [77, p. 36ff]) are dependent on the availability of a
server, which results in the need for continuity of the environment or at least of this single
device instance. If a client device leaves the setting, this does not have any (general) effect on
the functionality of the overall system since such a device does not have an essential function
in the program flow. But, if a server device becomes unavailable, the overall system will fail
completely and the server therefore becomes the “single point of failure”.

2.2. System architecture of distributed systems 16

Within such static architectures, the number of clients is limited since the resources of the
server are restricted and cannot be easily extended. Although concepts exist to reduce this
disadvantage like load balancing mechanisms (cp. [12, p.13ff], [45, p.29ff]), they are linked
with additional infrastructural efforts.

Since client-server architectures are rather easy to build and maintain and the overhead of
the device management is very low, client-server structures are well-suited for small work
groups. They work best if they are applied to scenarios with infrastructural support (e.g.
with a dedicated server machine in a meeting room or somewhere in a stable network).

Peer2Peer

Peer2peer solutions do not involve central servers (except “centralized”, or “mediated” peer2peer
networks with look-up servers [75, p. 37ff], [5]) but let the devices interact directly with each
other instead. An always available device with server functionality is thus not required, since
all the devices provide this functionality together. This makes peer2peer well suited for en-
vironments which are very dynamic and which contain no or only a very restricted stable
infrastructure: “Since communication end-points can move frequently and independently of
one another, mobile peer-to-peer systems are highly dynamic.” [44, p. 81] The failing of one or
multiple devices therefore does not affect the functionality of the overall system, since their
job is taken over redundantly by the remaining devices. Since in non-centralized systems
– such as the peer2peer architecture – no single instance keeps and decides on the current
program state, but this is rather a common functionality of multiple devices, replication of
the application state as well as constant synchronization is needed. This is especially essen-
tial for collaborative applications, since such systems very often contain shared objects or
data structures and accordingly, the devices have to notify each other about updates regu-
larly or even in real-time: "[. . .] copies of a shared object can be updated independently and
thus might become inconsistent over time. A synchronization mechanism must be employed
that either prevents or reconciles inconsistencies." [44, p. 83] Consequently, the redundancy
and increased dynamics of such redundant systems (usually) comes with the cost of higher
network load due to the extended communication need.

Hybrid Peer2Peer

Some intermediate architectures exist, such as hybrid peer2peer, which are defined as second
generation peer2peer networks by Eberspächer and Schollmeier in [75, p. 51]. The hybrid
approach integrates the additional concept of a hierarchy of the devices involved and separates
them into ultrapeers2 and leafnodes (cp. [5], [75]). Here, the devices which are defined to

2Here, the terminology is not always clear – often this type of device is also called a “superpeer”

2.2. System architecture of distributed systems 17

be ultrapeers are used as servers for a specific group of leafnodes but the ultrapeers still
communicate between each other in a pure peer2peer manner. If an ultrapeer fails, the
leafnodes it serves will be taken over by another available ultrapeer (cp. [75, p. 49]).

The advantages are that the necessary communication for the synchronization can be reduced
and that – in contrast to the classical client-server structure – a considerable improvement of
dynamics can be achieved since the system can react more flexible to the arrival or departure
of devices because the system is able to run as long as at least one ultrapeer is available.
In a hybrid peer2peer architecture the level of dynamics can be controlled by the number
of available ultrapeers. If there is only one ultrapeer, this corresponds to a client-server
structure, if all of the available devices are ultrapeers, it can be seen as a pure peer2peer
architecture.

Cloud computing

An additional possibility to integrate resources and therefore to increase the dynamics of
static client-server structures is cloud computing. Here, static structures can be made more
dynamic by the addition of external resources on demand, depending on the requirements
(e.g. when additional capacities are needed as more clients arrive): “One of the key features
of cloud computing is that computing resources can be obtained and released on the fly. Com-
pared to the traditional model that provisions resources according to peak demand, dynamic
resource provisioning allows service providers to acquire resources based on the current de-
mand” [92]. One disadvantage lies in the fact that the “cloud” is usually located outside
of the local networks and therefore can only be accessed through public networks (like the
internet). Therefore it might be possible that no performance gain is achieved even though
additional resources were made available since the external network connection represents a
new bottleneck.

Architecture of collaborative systems

Depending on the application, collaborative systems are focused on different system architec-
tures. Asynchronous collaboration systems usually rely on client-server architectures, since
they have to ensure long durations of availability of the shared information and therefore
need constant reachability as well as a unique, always available entry point (e.g. [7])

Synchronous collaboration on the other hand uses different approaches which depend on the
concrete environment in which the collaborative system is integrated. If the environment is
well defined and controllable (e.g. teleconferencing or meeting rooms), static structures are
the usual choice. If the collaboration takes place in non-defined environments (e.g. in the

2.2. System architecture of distributed systems 18

context of disaster management) more dynamic architectures are chosen (cp. [49]).

Only a few existing collaborative systems adapt to their environment and provide functional-
ities which allow ad-hoc use with dynamic structures and profit from infrastructural settings
as soon as they are available. One reason for this might be that most collaborative systems
have been developed for a specific task or setting with a predefined environment and therefore
the architecture of the system is given from the beginning (cp. 2.9).

2.2.2 System availability

The system’s availability depends directly on the chosen system architecture. In a rather
static environment such as a client-server architecture (but as well as a hybrid peer2peer
architecture with only a few ultrapeers), the availability can be kept high if it is ensured that
the device that provides the server functionality runs with a low failure rate and has a stable
network connection – otherwise it would represent a single point of failure (cp. [50, p. 14ff]).
With this architecture, if the environment is controllable, its availability and load capacities
can more easily be predicted.“Since star architectures3 have only one hop between a network
node and the central hub, they tend to be more predictable and reliable;” [85, p. 338]. Thus,
predictions about performance as well as stability can be made and – if necessary – actions
can be taken to improve the situation by adding more static resources combined with load
balancing and/or redundancy (cp. [12]). If the architecture is situated in a non-controllable
environment – e.g. if a randomly chosen device within an ad-hoc session is defined to be the
server instance – the failure rate will be coupled with this server device and cannot easily be
predicted. Static systems are therefore well suited for controlled environments which have
infrastructures in which server components can be integrated and managed.

With redundant architectures – such as the peer2peer approach (cp. Peer2peer in 2.2.1) –
availability is independent of infrastructural actions. Since the overall system is functional
as long as devices are available, very good stability can be achieved. Nevertheless, costs
related to communication between devices can lead to reductions of performance, since the
network can become a bottleneck. The dynamics of a peer2peer architecture is therefore best
suited for ad-hoc scenarios if there is no or only very little infrastructure. Because of the
increased communication needed to maintain consistency between devices this architecture
is often restricted by the network in collaborative environments.

Hybrid systems are well suited if some devices have a constant availability and therefore can
be defined to be an ultrapeer. They can reduce the cost of communication while still keeping
the environment independent of any infrastructure (cp. Hybrid Peer2Peer in 2.2.1).

3A standard server-client architecture is a typical star architecture

2.3. Platform- and device-heterogeneity 19

The dynamic integration of server instances through the cloud can have positive effects on the
stability of the overall system as well since they can be used to provide redundancy (cp. Cloud
computing in 2.2.1). But usually, an infrastructure has to exist to create a connection to the
cloud and this connection can itself become a bottleneck which cancels out the advantages
of stability due to the cost of the performance drop.

2.2.3 System scalability

The scalability of a system defines how many devices can be added without noticably affecting
its stability and performance. The extent of system performance is more or less predefined
for static systems since a restricted resource can be distributed based on the number of
participants. In addition to the performance of the server(s) itself, network capacity plays
an important role – in particular because all information comes together at a single point
and consequently the data throughput of a server differs essentially from that of a client
(asymmetric functionality, cp. [75, p. 11]). Scalability of the overall system is therefore
dependent on the performance of the server, the number of devices involved as well as of the
available network capacities (cp. [50, p. 55]). Again, the use of external resources on demand
(cp. Cloud computing in 2.2.1) can affect the scaling behavior of a system in a positive way,
since the cloud is able to react in a dynamic way to spontaneously appearing load peaks.

A more redundant architecture allows an improved load balance since all devices contain the
same information. A central instance, which collects all information and therefore handles the
main part of the communication load, does not exist. Therefore, the limits of more redundant
systems in terms of scalability is not clearly defined. Although the main bottleneck of static
systems is eliminated, other rare resources (e.g. network bandwidth) can fall into place and
the extra effort of communication for synchronizing the devices can cancel out the advantage
of the improved load balancing (cp. Peer2Peer in 2.2.1).

2.3 Platform- and device-heterogeneity

Heterogeneity is an issue for collaborative systems which want to relax the restriction of
supported devices to a maximum. This not only addresses heterogeneity in the sense of
different supported platforms but also in the sense of many different types of devices with
their own input modalities and special functionalities.

2.3. Platform- and device-heterogeneity 20

Model Driven Architecture

One approach to managing heterogeneity is to define functionalities as well as user interfaces
using a Model Driven Architecture (MDA) at an abstract level (e.g. [59]) and to generate
the concrete platform- and device-specific code based on that model. Problems appear when
device specificities need to be considered and the functionality should be customized for
specific devices. Those special cases either have to be handled as part of the model itself
(e.g. [66, p.110ff], [21]) or by manipulation of the generated code in a further development
step.

Model Driven Architecture is therefore well-suited for very standardized functionalities which
will be represented in an identical or at least very similar way on all devices. In contrast, it
is usually less suited for customizable and device-specific implementations.

Platform-independent languages

Platform independent languages, with their best-known representative Java [106], promise
the execution of the code written once on many different platforms without adaptation. This
is achieved most of the time by compilation into a platform-independent byte code which
is then processed by a device specific interpreter which translates the byte code into actual
machine code (cp. [4]). The often cited performance loss which results from interpretation at
run time is (at least for Java) more or less under control these days (cp. [108]) – nevertheless,
for the execution of the code, a specific interpreter is still necessary and unfortunately this
interpreter does not (yet) exist for all modern platforms and in particular for low-performance
devices (e.g. phones, e-readers, etc.) or sometimes only provides sub sets of functionalities
(e.g. [107]). Since the goal of such platform independent languages is to execute exactly the
same code on every target device, it can be difficult to customize an implementation based
on the type of platform capabilities of a specific device.

This type of technology is well-suited for cases when similar appearance of functionalities on
many different devices is desired and less suited for device specific implementations.

Cross-Compiler / Source to source translators

Cross-Compilers allow – similarly to “platform-independent languages” – writing code in
one single programming language. Instead of the translation of the code in a platform-
independent format, here machine code is generated in direct for multiple, different specific
platforms (e.g. [98]). Instead of generating binary code, source to source translators translate
source code from one programming language to another. With some cross compilers as well
as several source to source translators, it is possible to configure alternative implementations

2.3. Platform- and device-heterogeneity 21

for some software components which can be replaced when customizing a functionality on
different devices (e.g. [102]).

The option to define alternative implementations for different types of devices makes these
types of technologies especially interesting for adaptation to device specificities. On the other
hand, it needs a lot of preprocessing and is therefore often hard to manage and to test.

Dynamic languages

Dynamic languages are (usually) interpreted script languages. Examples are Perl [114],
Python [116], Ruby [118], Tcl/Tk [122] as well as ECMAScript [97] – better known by its most
famous dialect JavaScript. Whether the script language is supported by a specific platform
depends on the availability of the specific interpreter. In that context, JavaScript plays a
special role, since its interpreter is broadly available in the form of JavaScript enabled web
browsers: “Web client programs (browsers) are available for all popular computing platforms
and operating systems, providing access to information in a platform independent manner”
[8].

Every device that allows access to the internet and provides a (rather) modern internet
browser is capable of executing JavaScript. Although the functionalities of the language
are usually restricted by a so-called “sandbox" [25, p. 266ff] in which the code lives (in
standard web browsers it is for example not possible to directly access the file system or
other resources of the device). JavaScript is – because of its wide-spread support – a very
important language. Also, because of its broad platform support and its functionalities in
the areas of communication and widgets, Tcl/Tk is used rather often for the implementation
of collaborative systems (e.g. [65], [48], [28], [54]).

Dynamic languages are capable of reacting very well to their specific environment (e.g. the
executing device) at runtime. Because code can be added dynamically, the actual execution
and combination of program logic does not have to be fixed at compile-time but can rather be
decided on (and even controlled) at the execution phase. Although usually less performant
and sometimes even restricted in functionality, dynamic languages are very well suited for
the customization of logic for a specific execution scenario.

Overcoming the heterogeneity with web technologies

As mentioned above, one of the most widely distributed technologies that exists is JavaScript
because its interpreter inbuilt into almost any current web browser. Combined with HTML
and CSS, which are used for visualization, it makes up a technology set which we call “web
technologies". To address device- and platform heterogeneity in collaborative applications,

2.4. Eventing and synchronization 22

several toolkits have focused on implementations based on web technologies, particularly
because these technologies seem to have been developed from the beginning under the aspect
of collaboration: “The Hypertext Transfer Protocol (HTTP) is an application-level protocol
for distributed, collaborative, hypermedia information systems” [104]. While many projects
like the Basic Support for Cooperative Work (BSCW) [7] are restricted to asynchronous
collaboration by the provision of a shared workspace for the exchange of data and files only,
some newer projects such as Powermeeting [86] try to make use of the newest features of
modern web technology for synchronous systems. The extensions which have been included
into the web technology standards (HTML5, CSS3, more performant JavaScript engines)
are especially promising for their use in real-time systems and therefore for collaborative
applications as well: “This study has shown that with the advancement of Web 2.0 technology,
browser-based real-time groupware can now offer a level of functionality, interactivity, and
graphical user interface more akin to their traditional, desktop-based counterparts. Users seem
to feel quite comfortable with their use. Such browser-based groupware may have provided an
approach to address the adoption hurdle facing groupware for a long time.” [58]

Comparative discussion

We have seen different approaches to overcome the issues of heterogeneity when trying to
integrate a big set of different devices. Some technologies (Model Driven Architecture and
Platform-independent languages) are well suited for very standardized applications but less
so for the customization of functionalities to device specificities. Others offer alternatives
for different devices which are defined either at compile time (Cross-Compiler / Source to
Source translators) or at runtime (Dynamic languages). Depending on the application to
realize and the types of devices which will be supported, some technologies are more suitable
than others – in general the choice of technology is a tradeoff between customizability and
generalizability.

2.4 Eventing and synchronization

A well-known problem coming from the domain of distributed systems is the eventing and
the synchronization of the application state over multiple devices. Since in a collaborative
environment multiple devices interact with the same resources, Sun et al. developed a data
consistency model for cooperative editing systems [76]. They describe a collaborative system
to be consistent if the following requirements are fulfilled:

• Convergence: when the same set of operations have been executed at all sites, all
copies of the shared document are identical.

2.4. Eventing and synchronization 23

• Causality-preservation: for any pair of operations Oa and Ob, if Oa → Ob, then Oa

is executed before Ob at all sites.

• Intention-preservation: for any operation O, the effects of executing O at all sites
are the same as the intention of O, and the effect of executing O does not change the
effects of independent operations.

A consistent system can therefore be achieved if dependent operations are executed in the
same order on all devices involved.

This coordinated execution order can be achieved in different ways. Possible solutions can be
found under the term Concurrency Control and are grouped into optimistic and pessimistic
approaches (cp. [11, p. 187ff]).

Pessimistic concurrency control

Pessimistic concurrency control systems can be further divided into centralized and decen-
tralized solutions. A centralized control either contains one single instance that decides on
the program flow and coordinates the other involved entities (control unit) [76], or a token-
passing approach is established where a token is passed from device to device and only the
device currently holding the token is allowed to contribute to the system (e.g. execute oper-
ations, manipulate shared data) [11, p. 190f].

Decentralized pessimistic control mechanisms offer different possibilities for establishing syn-
chrony and therefore consistency between devices. In simple locking [11, p. 191ff], the access
to a specific part of a system is locked until the initiator frees it or another condition is
fulfilled (often a timeout). When using floor-passing [11, p. 194ff], the different parts of
the applications are assigned to a specific device. Only the device holding “ownership” of a
partial functionality is allowed to interact with it – if another device needs to access such
an area, it can request the current owner for transfer of “ownership”. Transactions [11, p.
197ff] allow to define specific execution flows including involved resources. If a transaction is
executed, the resources are locked and are released automatically as soon as the execution
of the transaction has finished. One of the most often used pessimistic control mechanism is
Operational Transformation (cp. [71], [70]). Here, conflicting operations are manipulated so
that their effects result in a consistent state even if they are not executed in the same order.
A typical application for that control mechanism is a collaborative text editor (cp. [76]).

Most types of pessimistic concurrency control strategies restrict interaction with a shared
object to a single device and therefore serialize the appearance of events. Although this
way of handling issues of conflicting events is straight-forward and has some very useful ap-
plications, pessimistic concurrency control often implies higher latency of a specific action

2.4. Eventing and synchronization 24

(because the device has to wait for the permission to participate) compared to optimistic
concurrency control. One of the main advantages of pessimistic concurrency control is that
the consistency can be ensured without the need of rollbacks or similar.

Optimistic concurrency control

Optimistic concurrency control allows the simultaneous interaction of all devices with the
overall system. Therefore, no structural order of the different events can be established. For
the implicit decision on the common valid order of events (and therefore execution of func-
tions), approaches have been developed as part of the event ordering in distributed systems.

The ordering of events in distributed systems has been addressed intensively for many years.
For example Lamport published fundamental work for this area already in 1978 by introduct-
ing logical clocks [47]. Many follow-ups such as vector clocks [24] or interval tree clocks [1]
were based mostly on the work of so called Lamport-Clocks and have extended the relatively
lightweight concept for the purpose of optimized ordering mechanisms.

Other approaches also exist like the Network Time Protocol (NTP) [57] which synchronizes
system time through multiple time servers and often achieves a precise enough clock syn-
chronization between the devices.

Since the correct sorting of events by their order of appearance can only be applied if the
received events are complete and no delayed events (e.g. by slow communication channels)
can arrive at a later point in time, the responsiveness of a system which tries to execute
these events and their underlying functionality conflict-free is rather poor and therefore has
a very bad influence on usability (cp. [27, p. 211ff]). To reduce the effect of this poor re-
sponsiveness, different approaches exist which allow to execute the program flow even before
sure that no conflicting (e.g. delayed) events arrive and to solve conflicts by the application
of well-suited strategies.

These strategies mainly focus on how disordered operations can be rolled back and how the
global order can be re-established (cp. [90, 82]). Other interesting strategies (like dead-
reckoning) originate from the research field of group- and online-gaming (e.g. [41], [16], also
cp. [18, p.266f])

Greenberg points out that “The choice of a concurrency control method can be difficult. A
wrong choice can lead to an unusable system. Selecting an overly powerful approach could be
overkill for the application, and much development time could be expended for schemes that
are unnecessary or used only rarely.” [27].

Complexity is actually very high and to make things worse, not all strategies can applied
to all types of events. There are events which become dispensable as soon as a newer event

2.5. Security and privacy 25

containing the same type of information has arrived (e.g. position of a mouse pointer). A
delayed event of that type can simply be ignored and an expensive conflict handling mecha-
nism is not needed [62, p. 160]. But, there are irreversible events as well. This is the case if
the execution of an event influences a non-controlled system (e.g. a credit card transaction
has been executed on a third party system). Since those events cannot be undone, it has to
be ensured before execution that no conflicts can arise, which usually implies the application
of a pessimistic approach. Consequently, it is not sufficient to choose one single strategy for
a specific collaborative system, but multiple strategies have to be chosen to address the dif-
ferent needs of applications: "we believe that concurrency control needs are highly application
dependent and that no one mechanism would suffice." [65]

Optimistic concurrency control usually has a better responsiveness than pessimistic strate-
gies since events can be handled immediately and are only rolled back in the case of conflicts
and if required. But, if conflicts arise too often, the gain of responsiveness is reduced by
the rollback mechanism which can have a negative influence on the user experience. The
effectiveness of optimistic concurrency control systems depends therefore on the number of
conflicts that actually appear[65].

Concurrency control for collaborative applications

Collaborative applications are typically executed as distributed systems and therefore are
affected by the issues mentioned above. Especially because of the need for fast responsiveness
of such systems, concurrency control has to be chosen very carefully and ways have to be found
to treat the different types of events. Although the decision of which concurrency control
strategy is the most suitable has to be made based on the actual application, the manifold
types of the different approaches should be encapsulated and simplified by a holistic toolkit
for collaborative applications.

2.5 Security and privacy

Users of collaborative systems have different security and privacy needs. When Alice is work-
ing with her private device (cp. 2.1.4), she needs to be sure that a collaborative application
only accesses data which will be used for the collaborative task but not her private resources
(e.g. private pictures). So, she either has to trust the collaborative application or has to
restrict the capabilities of the application by, for example, not giving the application access
to the file system. Another possibility is to run the application in a sandbox (cp. Dynamic
languages in 2.3) that restricts the functionality of the program and might ask for explicit
permission to execute actions which go beyond standard functionalities. But, privacy also

2.5. Security and privacy 26

means that Alice is capable of protecting her data from being seen by Bob (e.g. by looking
at her device in a colocated collaborative setting).

In addition to issues of privacy, collaborative systems have to ensure technical security as
well: private data, protected data (e.g. data which should only be seen by a specific work
group) as well as public data have to be protected. Access to the collaborative setting has
to be restricted and it has to be possible to investigate who was executing which actions if
some irregularities appear.

Schäfer divides the topic into subtopics based on the usual confidentiality, integrity and avail-
ability (CIA) terminology, but further separates security into confidentiality, data integrity,
accountability, availability and controlled access [69, p. 7f].

Confidentiality

“Transmitted or stored data should only be disclosed to authorised entities” [69, p. 7]

Confidentiality means protecting data from unauthorized disclosure. This topic is strongly
linked to the area of cryptography, which itself can be categorized into symmetric and asym-
metric approaches (cp. [42, p. 47ff and p. 50ff]).

Symmetric cryptography ([69, p.31ff]) bases itself on only one single key, which is used for
both decryption and encryption. Although this approach performs quite well, it implies the
issue of transporting the key through non-protected networks (cp. [69, p. 111ff]). Asymmet-
ric cryptography on the other hand uses two keys – so called private-public key pairs. The
idea is to have one secret key for every user (private key) as well as one public key which has
a mathematical dependency on that private key, and which is publicly available. Although
theoretically feasible, it is practically impossible to recalculate the private key based only on
knowledge of the public key. [69, p. 53ff]

If somebody wants a specific user to be able to read a message, the message can be encrypted
with the public key of the recipient and can only be decrypted by application of the corre-
sponding private key. On the other hand, a message encrypted by a private key can only
be decrypted by the public key, which allows the creation of digital signatures. Anybody
can check the authenticity of a sender through successful decryption of a signature with the
corresponding public key and therefore is able to ensure that the message originated from
this specific user (cp. [93, p. 10]).

Although asymmetric cryptography – compared to symmetric – results in increased calcu-
lation efforts, it has the advantage that no secret key has to be exchanged between users.
This is why it is common that symmetric keys are protected by asymmetric encryption for
their transmission through non-secure networks. This ensures that no non-authorized party

2.5. Security and privacy 27

can access the shared key, while still profiting from the better performance of symmetric
encryption mechanisms (cp. Diffie-Hellman key exchange [73, p. 190]).

This is particularly important in the context of collaborative systems because usually a lot
of data is exchanged between devices and users. A shared key could be made available to all
members of a work group, ensuring that nobody else would have access to the corresponding
information while achieving better performance than with asymmetric encryption.

Data integrity

“It should be possible to detect unintentional or deliberate changes to data. This requires that
the identification of the originator of the data is unique and cannot be manipulated.”
[69, p. 7]

To make sure that messages have not been manipulated on their way from a sender to a
recipient the concept of check-values exists (cp. [69, p. 83ff]). To ensure the integrity of
data, Alice (the sender) creates a check-value by applying a hash function, encrypts the
result using her private key and adds it to her message for Bob. Bob (the recipient) decrypts
the check-value using Alice’s public key, calculates the check-value by applying the same hash
function to the received message and checks if both check-values are equal [93, p. 11]. If
the message had been manipulated between sending and reception (e.g. by manipulation,
network failures, or similar), the two values would not match and Bob would be informed
that there are issues with that message and that it should not be trusted. Depending on
the application, the system could then either display an error message or simply ignore the
message.

By applying data integrity, collaborative systems can therefore ensure that the actions and
contributions are not manipulated on their way through the network and therefore create the
foundations for accountability.

Accountability

“It must be possible to identify the entity responsible for a particular event (e.g. use of a
service)” [69, p. 7]

While data integrity makes sure that data is not manipulated on its way through the network,
accountability ensures the traceability of messages and their actions. This can be achieved
by consistent validation of digital signatures (cp. Data integrity) and the logging of sender
names. The information can be visualized (e.g. by annotating executed actions or manipu-
lated application states with user assigned colors) which enables other users to keep track of
who has been causing which action and thus gives them a mean of control (e.g. they could

2.5. Security and privacy 28

intervene directly by talking to the user or by correcting malicious actions). Accountability
therefore is not only a technical requirement, but also is part of the establishment of the
awareness of what other users are doing, and being able to trace the actions taken which
might lead to a smoother collaboration.

Availability

“The services implemented in a system should be available and function properly” [69, p. 8]

The availability of a system is part of security as well. A system should be reachable and
work failure-free. While reachability can be influenced by the system architecture (cp. 2.2),
failure-free execution mainly depends on the quality of the implementation of the system as
well as on the tolerance of the system in regard to non-predicted states (cp. [36]). The quality
of the implementation could be encouraged using tools which guide a developer, ensuring that
critical parts of the code are covered by the implementation, and which might even provide
default implementations and fallback solutions to make sure that the application and its
functionalities are available and working.

Controlled access

“Only authorised entities should be able to access certain services and data” [69, p. 8]

One important part of security is access control. Usually, some areas/functionalities of soft-
ware will be restricted to a few authorized users. To authorize users, different possibilities
exist. In static architectures, it is common to have one authentication instance (e.g. Ker-
beros [61]), that checks if and which access rights exist for a specific user. But, especially
in dynamic systems, such a centralized check of access permissions is not possible: “Mobile
entities will often become disconnected from their home networks and must be able to make
fully autonomous security decisions; they can’t rely on specific security infrastructures such
as certificate authorities and authorization servers.” [13]

For such dynamic systems (e.g. Peer2Peer – cp. 2.2.1), different approaches exist for au-
thenticating users. Usually, so called reputation systems are applied which are based on trust
between the users involved: “Reputation systems have been often used in P2P networks to
involve trust such as [87] [40], among others” [2].

Although open collaborative systems without access control are imaginable, the control of
access is a need in many collaborative scenarios. Because of its dependency on the available
resources and system architecture, different solutions should be applied depending on the
type of collaborative system.

2.6. Interaction with shared devices 29

Since collaboration can appear ad-hoc, and therefore a non-defined user group might appear,
centralized user management with predefined user accounts is not suitable. Additionally,
collaborators very likely have social relations of trust between them (they probably know
each other at least indirectly through a third person when collaborating). Reputation based
systems, therefore, seem to be a natural fit for authentication, especially in ad-hoc scenarios,
and have to be considered seriously for control access in collaborative systems.

2.6 Interaction with shared devices

"Unfortunately, modern window systems are tied to the notion of a single cursor, and appli-
cation developers must go to great lengths (and suffer performance penalties) to implement
multiple cursors" [65]

If multiple users want to access a public device such as a shared screen (cp. 2.1.4), this
not only implies issues of system support or conflict management logic (cp. 2.4), but also
of visualization. For example, the simultaneous editing of a text box by multiple users or
the parallel editing of multiple text fields is not easily feasible with standard components of
today’s libraries for graphical user interfaces, since they are only prepared for a single focused
element at a time and expect only one input reference (text cursor) in this focused widget.

Several technical solutions to support multiple input devices exist – e.g. the Multi Pointer
X-Server (MPX) of Peter Hutterer [37] is an extension of the X-Window-System [67], which
has been integrated into the X.Org-system [125] and which enables the use of multiple mouse
pointers controlled by different input devices on Linux systems. Although the basic support
of this extension has been adopted by the widely distributed graphical software library GTK+
[100], this support is restricted to the extension of the programming interfaces and does not
include the application of these new possibilities to the graphical components and multi-focus
functionalities: “Missing stuff [. . .] – Complex GtkWidgets need multipointer awareness, this
can be done one by one [. . .] – per-pointer tooltips and multiple keyboard foci? do we want
to get that far?” [101]

If such functionalities are to be supported, the use of specialized graphical frameworks (e.g.
the Windows MultiPoint Mouse SDK [111]) or the self-made extensions of existing frame-
works are the only options for a developer. Therefore, the support of such extended functions
is usually combined with an essential restriction of applicable technologies and reduces, in
almost any case, the number of supported platforms since the portability of such specialized
libraries is rather poor. Therefore, multi-user support represents a serious restriction on sup-
ported devices within a collaborative environment and ways have to be found to overcome
these limitations.

2.7. Aspects of user experience 30

2.7 Aspects of user experience

In addition to the rather technical topics of computer supported collaborative work presented
above, topics which affect the actual use and therefore the user experience of the different
collaborators have to be taken into account as well. Two main topics in this context are user
awareness and the distribution of user interfaces.

2.7.1 User awareness

One of the key elements of a collaborative system is the establishment of awareness about
the activities of other users. The way in which actions of other users are represented (e.g. by
displaying their mouse pointers on a shared resource) have to be differentiated between those
which originated in a remote location and those that originated in a co-located context. Hill
claims that “. . . we need to distribute the synchronization events, but have visual representa-
tions of those events that are appropriate for either the local or remote user.” [32, p. 545f].
And Tang et al. find that “Presence disparity unbalances a collaborator’s experience of the
group: maintaining awareness, sensing engagement and involvement and communicating is
much easier with collocated collaborators compared to remote collaborators.” [78]

2.7.2 Distribution of user interfaces

“Developing user interfaces for a heterogeneous environment is a difficult challenge. Partial
distribution of the user interface is an even harder one.” [3]

The distribution of user interfaces – e.g. in multi-display groupware (MDG) scenarios – can
be established with many different approaches. The idea to distribute components or parts
of user interfaces to different devices and therefore to address the issue of restricted amount
of space for visualization or to present private information on personal devices is obvious but
not trivial.

Although some work that addresses the distribution of non-visual parts of graphical user in-
terfaces (e.g. sound) exists (“For example, a wireless PDA that lacks audio output is enabled
[. . .] to exploit a stereo speaker in the vicinity for playback of the audio component [. . .]” [31,
p. 222]), most of the contributed work focuses on the distribution of graphical user interfaces
(GUI).

Besides the variant to distribute the user interface equally by the concept of What You See
Is What I See (WYSIWIS) [74] and therefore to duplicate and transfer complete views to
the different devices (cp. [23]), solutions exist that allow to separate specific elements of the
interfaces and therefore distribute only partial views.

2.7. Aspects of user experience 31

Usually, such distributed user interfaces (DUIs) are combined by multiple components which
communicate with and influence each other but are still independent and can be seen as a
single functional entity. One example for such separable components are the different tools
of an image editing software (e.g. GIMP [99], cp. Figure 2.3).

Figure 2.3.: Separatable GUI components in the example of the image editing software GIMP
[99]

In the context of web technologies, the concept of applications combined by multiple different
parts are known as Mashups (cp. [91]), where the different (visual) components define the
granularity of the distributed interface.

The definition of such parts of a user interface can either be done explicitly by the declaration
of meta data within the program code (cp. [31]), as part of the models in model driven archi-
tectures (MDA), or implicitly by the implementation of independent graphical components
(e.g. dialogs, tabs, popups, etc.).

More complex variants of distributed user interfaces additionally react on the different speci-
ficities of the executing devices, and adapt their functionalities, for example to the provided
interaction modalities: “DUIs allow for the UI to be spread out over a set of displays/devices/-
platforms taking advantage of their unique properties instead of residing on a single display/
device/platform with the interaction capabilities that are constrained on this display/device/-
platform" [55].

Problems arise if the user interface needs to be distributed dynamically in a non-predefined
environment: “[. . .] there is almost no genuine DUI since UI elements have been developed
in such a way that they simply remain in their initial context, while communicating with each

2.8. Toolkits and solutions for collaborative applications 32

other, but without any possibility to be rearranged.” [55, p.13]. Vandervelpen et al. differen-
tiate between different distribution strategies depending on who decides on the distinction:
user-driven distribution (the user decides explicitly, which components are distributed to
which device), system-driven distribution (the system detects the available devices and de-
fines an initial distribution) and continuous distribution (the system reacts to changes at
runtime and re-distributes components if necessary).

For the system supported distribution logics, Luyten et al. [53] distinguish between task-
oriented, device-oriented and location-oriented distributions, which – depending on their
category – influence the distribution logic. In task-oriented distribution the task to execute
decides which components are to be displayed on a specific device (e.g. based on the specific
role of the user within the collaboration). In device-oriented distribution the available devices
are analyzed for their functionalities and the user interface is distributed based on the differ-
ent capabilities of the devices. Location-oriented distribution makes its distribution decisions
based on the spatial distribution of the devices within the collaborative environment.

The distribution is also affected by the type of component: some components can be dis-
tributed multiple times (e.g. toolboxes), whereas some should be instantiated only once (e.g.
canvas).

Most of the time a device-spanning management logic (such as the Interface Distribution
Daemon in [53]) is applied which has – in the context of multi-user applications – to take
device groupings (e.g. if a user owns multiple devices) into account when distributing the
visual components.

An advanced distribution mechanism for user interfaces therefore should support the rear-
rangement of user interface components (either replicated or complementary), distributed by
exchangeable decision logics.

2.8 Toolkits and solutions for collaborative applications

Thus far, numerous toolkits and frameworks for collaborative systems have been created.
Most of them focus on single, fundamental problems of collaboration, but seldom on the
full complexity of the field. Already in 1996 Roseman and Greenberg find that "Virtually
all toolkits [. . .] are just prototypes used to explore different ideas, abstractions, and archi-
tectures." [65] and Hill und Gutwin judge the different solutions to be focused differently:
“Different toolkits focus on different aspects of the groupware development problem: some
focus on what can be done through different programming approaches [. . .], some on distri-
bution architectures [. . .], and others on simplicity [. . .]” [32, p. 544]

2.8. Toolkits and solutions for collaborative applications 33

In this section, an overview of the different work in this field is given. Examples of solutions
addressing partial characteristics of collaborative systems as well as approaches for more
complete tools for the development are presented. Since there are many toolkits available,
only a selection of them can be discussed here, which are representative of other, similar, but
not listed solutions.

2.8.1 Multi-user / multi-device support

There are different solutions, which address the fundamental (technical) support of multiple
users by software. We would like to distinguish between approaches for the separation of
multiple input devices, toolkits for the design of graphical multi-user interfaces as well as
solutions that adapt existing (legacy) applications for collaborative execution.

Technical solutions for multiple input devices

The separation of different input devices (usually pointing devices such as mices) usually
requires an interface on the system layer to access the attached input devices one by one
and to react to possible events (e.g. RAW-Input [117] and [80, p. 102]). This information is
then provided by a specialized programming interface for software development. The range
of such solutions varies substantially: While the MID project ([34]) – similar to the graphical
software library GTK+ in combination with MPX [101] – only integrates the additional
device information into the eventing mechanism of the underlying technology and leaves the
handling of that information to the developer, solutions like the Windows MultiPoint Mouse
SDK (cp. [111]) or the SDGToolkit (cp. [80]) provide additional graphical elements, which
offer fundamental support for the corresponding extra information (e.g. “multipoint button”
in Multipoint Mouse SDK, or text boxes with multi-focus functionality in the SDGToolkit).

The dependency on system specific interfaces of such toolkits and libraries not only negatively
affects their portability between different platforms but also leads to a varying range of
functionality. While a solution based on MPX works with all pointing devices supported
by the operating system using higher level of abstraction, others – usually based on low-
level interfaces (e.g. RAW-Input) – only support some types of devices: “MultiPoint Mouse
SDK supports USB, PS/2, Bluetooth, trackpad, and wireless mouse devices. [. . .] Other HID
devices (such as joysticks and game controllers) are not supported.“ [111].

Widget toolkits

In addition to pure multi-user functionality, different projects address the issues of the design
and creation process for graphical interfaces supporting multiple users. Besides the Microsoft

2.8. Toolkits and solutions for collaborative applications 34

Mouse SDK, which has been presented in the previous section, the MAUI Toolkit [32] in
particular is dedicated to user awareness in collaborative environments. Thus, the established
library for graphical user interfaces in Java, Swing [51] has been extended for multi-user
support. Here, additional widgets have been developed that for example allow to show which
user interacts with which part of the graphical user interface.

2.8.2 Extension of legacy apps

Some solutions have tried to transform existing applications into collaborative systems with-
out adaptation of code. One of them is the project mighty mouse [10], which is based on
Virtual Network Computing (VNC) and extends the pure transmission of the screen with a
rudimentary floor control. Although this allows a shared view of a specific application, there
is only one device at a time that is allowed to interact with the application. Because of the
good support of VNC on many different platforms, this tool is easily executable on differ-
ent operating systems. While this is true for standard computers, it is not necessarily the
case for other devices such as smart phones or similar. The project CollabWiseTk promises
“rendering any stand-alone client collaborative, without a code re-write” [48]. Here, the com-
munication structure in the background of a Tcl/Tk application is extended to manage the
synchronization between remotely located widgets.

Although very comfortable since applications can be used in a collaborative context without
having to be adapted and rebuilt, solutions which extend legacy applications (usually) only
clone the application and redistribute it without considering device specificities or different
ways of multi-user management and are therefore rather restricted in terms of customizability
and extensibility.

2.8.3 Communication

The area of communication contains different concepts. In the context of collaborative ap-
plications, the connectivity (how devices are interconnected) as well as the design and ab-
straction of the distribution of information (messaging) for the replication and notification,
as well as the load balancing of the execution of program logic on the involved distributed
devices are essential.

One of the most common functionalities of collaborative toolkits is the provision of shared
data structures as well as concepts for the optimization of network communication between
the devices. For example, the GT/SD [18] toolkit abstracts the connections between the dif-
ferent devices and provides the opportunity to access shared data with its “shared directory”

2.8. Toolkits and solutions for collaborative applications 35

The Kevlar [35] project focuses on efficient data exchange as well by reducing the bottleneck
of common web service communication paths through adaptation of the concept to peer2peer
structures – particularly in the context of wide area networks (WAN). The SyD [63] mid-
dleware unifies the communication management with a device management functionality
and provides programming interfaces for the look-up of available services in a collaborative
environment.

2.8.4 Distribution of user interfaces

Support for the distribution of (mainly graphical) user interfaces is also the focus of some
toolkits. For example, GrafiXML [56] allows to define such interfaces by the use of a UI-
description language named UsiXML which can be translated into different technologies (e.g.
HTML, XUL, OSF Motif, etc.).

The Toolkit for Peer-To-Peer Distributed User Interfaces by Melchior et al. [56] allows to ex-
change Tcl/Tk widgets between different devices and the project WebSplitter [31] distributes
parts of web pages onto different target devices.

Instead of the distribution of traditional graphical user interfaces, the project ZOIL [38] fo-
cuses on the design and distribution of post-WIMP (“window, icon, menu, pointing device”)
user interfaces where the underlying objects (instead of the graphical and functional compo-
nents) are synchronized between the different devices involved as is the case in most other
approaches.

2.8.5 General toolkits

Additionally, there have been some approaches to develop more general toolkits, which try
to achieve as complete an abstraction of the complexity of collaborative systems as pos-
sible. One of the best-known and most cited toolkits of that kind is the GroupKIT [65]
project. It addresses – among others – the topic of collaborative session management, pro-
gramming interfaces for simplified communication between devices (including conflict man-
agement strategies), tele-pointers, and means for the visual distinction between remote and
local mouse pointers.

The “meta operating system” GaiaOS [64] tries to abstract a collaborative environment (“Ac-
tive Space”) extensively and to allow the developer to interact with a single, abstract in-
stance instead of many different devices and services. Aside the management of the intercon-
nected devices, the system provides a distributed, contextualized file system and manages the
component-based applications developed with the provided application development frame-
work.

2.9. Discussion 36

2.9 Discussion

Although numerous solutions and proposals exist for the main issues facing collaborative
systems, complexity of the concrete implementation of such applications is still an important
issue.

A developer of a collaborative application is not only confronted with these numerous different
challenges, but also with the issue of the integration of these different partial solutions. This
integration is even more complex because the different partial solutions usually use different
technologies which might be incompatible or involve other issues when they are combined.

Additionally, the platform- and/or device-type dependency of most of the existing toolkits
implies a restricted extensibility of the chosen technology and, consequently, the solutions
cannot, or only with a significant effort, be adapted to the fast ongoing development in the
area of hardware and to the appearance of new types of devices: “Although they (collaborative
environments) share a good mount of common functionality, most of them are built from
scratch, or are tailored to a specific device platform using proprietary libraries. An open and
customizable environment for mobile collaborative applications is still missing.” [72, p. 118]

Based on the knowledge gained from the related work as well as the strong belief that the
effectiveness of existing (and upcoming) solutions for the different issues facing collaborative
applications varies depending on the needs of a specific application and therefore no single
optimal solution for a single problem can ever be provided, we are convinced that an open,
extensible toolkit for the efficient development of computer supported collaborative systems
is needed. Consequently, a technology has to be found which is future safe and extensible,
which is supported by a maximum number of common device types, which allows colocated,
remote as well as mixed presence collaboration and which adapts itself to the properties of the
environment (e.g. different representations for remote and colocated users). Synchronous as
well as asynchronous collaboration should be supported, as well as the possibility to execute
an application in both “ad-hoc” scenarios and in infrastructurally supported environments.
Therefore, the toolkit should not be restricted by expecting given, predefined devices and
should adapt itself in an optimal way to the current environmental settings. Devices (e.g.
private devices of the users) shall be integrated dynamically into the system while obeying
the “walk up and use” paradigm to reduce the barriers for ad-hoc use and to let new users
easily connect to the collaborative system. To achieve this, a broad heterogeneity of devices
should be supported without the requirement of installation or configuration. The system
should – depending on its situation – run in peer2peer environments as well as in client-
server structures and allow the dynamic integration of resources (cp. 2.2.1). Eventing and
synchronization strategies should be predefined and provided as default implementations,
which can be overridden and/or replaced by specialized implementations if needed. The

2.9. Discussion 37

affected user interfaces as well as their components should support multi-user use while still
keeping their initial capabilities for single-user use. Structures for a simplified distribution
of user interfaces as well as mechanisms to secure communication and user authentication
should also be provided.

To increase acceptance of such a toolkit by potential developers, main stream technologies
should be used to increase the probability of longevity.

In our research into existing solutions, we have found toolkits which offer development aids
in specific environments, for specific purposes or under specific preconditions but no toolkit
which is as dynamic and complete as described above.

In 1996, Roseman and Greenberg found that “Groupware toolkits still have a long way to go
to catch up to their single-user counterparts. We look forward to the day when all toolkits,
perhaps influenced by GroupKit and others in its genre, will incorporate multiuser features.
When that day comes, the artificial distinction between constructing single and collaborative
systems will disappear.” [65] Although significant efforts have been made since then, this
finding is now – 16 years later – still valid. The development of groupware (or collaborative
applications) is still not as well supported as single-user application development. One reason
might be the huge complexity of the general problem of this topic. Another is that technical
evolution has during the years created an even more heterogeneous landscape of devices and
technologies rather than defining unified and generally accepted standards. Although all
the new technologies have extended the possibilities and opportunities, they have increased
complexity even more. That is why today the need for efficient toolkits is bigger than ever.

3
Specification

3.1. Context of the work . 39

3.2. Requirements . 39

3.2.1. Technology . 39

3.2.2. Software architecture . 42

3.2.3. Basic functionalities . 43

3.3. Choice of technology . 45

3.3.1. Priorization of requirements . 46

3.3.2. Technology candidates . 47

3.3.3. Technology decision . 58

3.3.4. Implications and challenges . 62

3.4. System architecture . 65

3.4.1. Overview . 65

3.4.2. Work load distribution . 67

3.4.3. Server side functionalities . 67

3.4.4. Client side functionalities . 69

3.4.5. Communication . 70

3.4.6. Set-up . 71

3.5. Discussion . 72

The related work has shown that there is currently no flexible toolkit available which exhaus-
tively supports the development of any type of computer supported collaborative application.

In this chapter, we will explain where the need for such a flexible software infrastructure came
from and in which context we have applied it. We present the facts that have influenced our
technology choice and the consequences of this choice for the software engineering process,

38

3.1. Context of the work 39

as well as the system architecture structure, by listing the additional challenges and benefits
that our choice has implied. We then describe the chosen system architecture as well as how
the overall architecture applies to the different environment we would like to support.

3.1 Context of the work

As part of the project “Interactive Collaborative Environments” (ICE), we are focusing on
the optimization of collaborative work through the use of electronic devices. Therefore, our
group has set up an interdisciplinary collaboration of computer scientists, HCI and UX ex-
perts as well as psychologists. The goal of this collaboration is to explore interaction between
users and devices from a variety of perspectives and in different contexts.

To be able to support the varying needs and since researchers without special technical knowl-
edge will be running the experiments, there was a need for a solution which runs on as many
different devices and device types as possible, is easy to use and future safe, since the project
is intended for the long-term.

Although the main focus of our research is currently set on synchronous co-located collab-
oration, asynchronous as well as telepresent scenarios might be the focus of future research
and therefore the solution has to support all potential types of collaborative systems.

We therefore decided to create a generic toolkit for the development of collaborative appli-
cations which suits the needs of the manifold group of stakeholders within this project.

3.2 Requirements

To find an appropriate solution for the development of the software for the experiments in our
project, different types of requirements have to be defined: Requirements for the technology
will lead to a decision about which technology should be chosen for the implementation (cp.
3.3.3). Aspects of the software architecture define fundamental concepts which should be
considered for the design and realization of the concrete modules, and basic functionalities
are required to provide the necessary support for the establishment of a basic structure for a
collaborative system.

3.2.1 Technology

Finding an appropriate technology is very important since it has a significant impact on the
outcome of our toolkit. The wrong choice of technology could either restrict the functionalities
or the supported devices of the resulting solution, or could lead to a lack of acceptance in

3.2. Requirements 40

the developer community and therefore end up unused. Therefore, based on the needs of our
project, we have defined the main requirements as future-safety and acceptance, dynamics,
availability, scalability and heterogeneity, easy set-up as well as privacy awareness.

Future-safety and acceptance

One of the most important requirements that a toolkit which will be used in different scenar-
ios and accepted by other developers should ensure, is that it is based on well established –
and thereforewell-known – as well as future-safe technologies. This means that it should
have broad acceptance and support and neither rely on proprietary technologies (since they
could be deprecated by the company that owns them), nor on those which are currently
trendy but have not been applied to a broad range of applications yet. A trend can pass,
and if there are not enough applications of the technology, support and ongoing development
can stop rather quickly. Another important aspect is that developers usually have their pref-
erences of technologies, which depend mostly on their personal experience. Although most
of them are willing to learn new technologies and approaches, they usually like to be able
to reuse well-known concepts and languages. Therefore, to address as many potential users
of the toolkit as possible and reduce their efforts for learning new technologies, the toolkit
should be based on widely accepted programming languages and concepts.

The future-safety of a technology is always hard to predict since evolution in this area occurs
very quickly and can hardly be foreseen. Indicators for longevity of a technology can be
found in the degree of standardization (the more standardized the more potential implemen-
tations exist and therefore the lower the probability of deprecation of the technology), the
technology’s current spread (if a technology is widespread, the availability of legacy-support
and backwards-compatibility are more probable than for technologies which are in little use)
as well as the adaptability of the technology itself to new concepts and improvements.

Dynamics, heterogeneity, availability and scalability

Given our context, we mainly have collaborative systems in mind which integrate multiple
(private as well as shared) devices to solve collaborative tasks, and are therefore building a
distributed system. This is why the chosen technology should be applicable in very dynamic
situations, i.e. where very heterogenous devices appear and disappear unexpectedly. This
dynamics of device appearance and disappearance is not only caused by technical issues (loss
of connectivity, low battery of devices, etc.) but also by the (potentially) ad-hoc nature of
collaborative settings where users can join and leave at any time.

3.2. Requirements 41

To support heterogeneous devices, the technology should not only support many different
platforms and device types but also take into account that the capabilities of those devices
differ – e.g. in terms of performance, screen size, network interfaces, etc. – and therefore
should distinguish between the components which can be executed on the different devices
(e.g. a smart phone cannot display big images but can be used as a text entry device). If a
device does not fulfill the requirements of some components of the system (because of a lack
of capabilities due to restrictions defined by the user), the device should still be integrated
into the overall system, even though the set of supported components is restricted. Therefore,
the technology should not decide on device support using an “all or nothing” concept, but
rather try to integrate as many devices as possible.

To ensure availability of the system, the toolkit should make sure that the environment
for the application execution can be kept as stable as possible. Therefore, it should be
flexible enough to be applied to different system architectures to either profit from a stable
environment with infrastructural support or to achieve any needed redundancy by allocations
of multiple server instances to ensure a stable environment with high availability while trying
to keep the management overhead for the replication and synchronization as low as possible.

In addition to the availability, scalability should be considered as well. If for examples
many additional devices arrive in a specific situation, the system should find ways to scale
accordingly, either by dynamic allocation of additional resources or by optimizations of the
communication structure between the devices (e.g. load-balancing).

Easy set-up

A collaborative system which should be set up within a short time by persons with unknown
technological knowledge (e.g. end-users in an ad-hoc situation) has to ensure that the set-up
process is as easy as possible. One key factor to achieving such an easy set-up system is the
realization of the application with a configuration and installation free technology, creating
a “walk up and use” scenario. Only if the configuration and installation requirements can be
reduced to a minimum, can it be ensured that a simple set-up is achievable.

Privacy awareness

When users interact with potentially unknown collaborators and systems using their private
devices – which often hold sensitive personal information – the need for ensured privacy
arises. When users connect to a system the first time and they do not have any information
about the trustworthiness of the application that will be executed on their device, they need
to be made aware that the system is under their control using clear restrictions that they

3.2. Requirements 42

themselves can adapt. Therefore, the chosen technology should provide means to ensure
that the executed application is running with only restricted privileges and explicitly asks for
permission for anything that is out of scope of the set of allowed functionalities. This way,
users can be sure that no files or other device resources can be accessed either by the system
itself or by other devices connected to the system unless explicit permission is given by the
user.

3.2.2 Software architecture

Besides the requirements of the technology itself, software architecture aspects influence
the suitability and acceptability of the toolkit. These requirements therefore have to be
considered when the toolkit is actually engineered and implemented.

Simple APIs and reuse of concepts of the technology

To make sure that developers feel comfortable with a toolkit, new concepts and specific
interfaces should be included as rarely as possible. To minimize the overhead of becoming
familiar with a new technology, it is important that concepts and conventions of the chosen
technology are obeyed and kept constant as much as possible. Therefore, one goal of the
design and definition of the toolkit APIs is that the extended functionality should be hard to
distinguish from the standard-set of functionalities of the underlying technology and that it
should reuse standard interfaces whenever possible. This not only helps the developer profit
from their experience, common knowledge and a broader supportive community, but the
toolkit can also profit from the ongoing development of the underlying technology provided
by third parties.

Modularity and extensibility

The toolkit should be built in a modular way. Since its purpose is to provide functionality
for varying scenarios, not all functionalities will be needed and therefore, unnecessary func-
tionalities should be excludable from an application. Additionally, different implementations
for a specific issue could be better suited depending on the type of application and therefore
should be replaceable. Modularity helps third party developers add their own components
and therefore extends the toolkit if they have a specific need that has not been addressed (or
not in the needed way) yet.

3.2. Requirements 43

Resource saving through lazy code loading

Since there can be different modules of functionalities, not all of them will be executed on
every device and at the same time. To save resources (e.g. memory, cpu power, etc.) it
is important (especially because low-end devices with very restricted capabilities may be
involved) to reduce the overhead of non-used elements and therefore to load and execute the
different elements “lazily”, at the very moment that they are accessed. This way, the device
only has to handle the code that is actually executed and can save both internal resources
and network traffic.

Device-specific adaptation by design

Different devices need different implementations of components. Examples of device-specific
needs are different layouts for devices with differing screen sizes, the size of buttons, awareness
of different input modalities (touch events / mouse events) and other interactive elements
based on the type of device. Since the heterogeneity of devices our toolkit should support
is wide, the need for customization based on different types or capabilities of devices should
be regarded as essential. Therefore, our toolkit needs to provide ways to differ between the
specificities of devices by design – meaning that it should contain prepared structures for
replacing implementations based on what kind of devices the application runs on.

Communication: Responsiveness and optimized network traffic

Communication is an essential part in any type of distributed systems. As seen in the related
work, synchronous collaboration in particular – due to the need for good system responsive-
ness – has very high demands on low network latencies, which makes the organization and
establishment of communication a huge challenge. The system therefore should not only
provide comfortable ways (APIs) to let the different devices communicate with each other,
but to also take the optimization of network-traffic into account.

3.2.3 Basic functionalities

In addition to software architecture requirements, the toolkit has to provide solutions for
concrete needs which do not affect the overall technology but which have to be handled
in almost any (collaborative) application. Therefore, the following features define a set of
fundamental functionalities which should be provided by the toolkit:

3.2. Requirements 44

Easy access

While the simplicity of the initial set-up of the system is supported by choosing an appropriate
technology (cp. 3.2.1), potential users should also be able to connect their devices to the
already running overall system in a simple and easy way, without the need for special technical
knowledge. The creation of a network connection to the surrounding environment is part of
the process of entering a collaborative system, as is the launch of the current client application
which provides the needed functionality to interact with the other devices. The toolkit
therefore should provide ways to simplify these tasks.

Messaging and eventing

Since we are in the context of distributed systems, the relevant coordination and (conflict)
handling of messages and events should be provided by the toolkit. Aware of the fact that the
effectiveness of these mechanisms depends on the actual need of the application (cp. 2.4), the
toolkit should not provide a single eventing mechanism that is assumed to suit any type of
situation, but rather should provide different kinds of implementations allowing developers to
choose the one that is the most suitable for the system they are developing. The developers
have to be made aware of the advantages and disadvantages of the chosen strategy by the
toolkit through hints as part of the API (e.g. by the requirement of an explicit selection of a
specific strategy) which at the same time hides the complex realization of the implementation
behind the scenes.

Application level security

Security aspects come up when messages are exchanged between devices which should not be
seen by other participants or devices of the collaborative setting. Besides system messages
(events), this applies to user messages as well. Especially when working in ad-hoc mode
without trusted instances (because devices belong to a potentially unknown user), the toolkit
should provide means to ensure that information is kept secure independently of how it
moves through the network. This can be achieved by encryption of the messages before their
transmission over the network.

Multi-user support

The support of multiple users often implies the introduction of shared resources which might
need to be accessible synchronously. Although almost no current operating system or graph-
ical user interface library supports the interaction of multiple input devices (e.g. multiple

3.3. Choice of technology 45

mouse pointers, multiple keyboards) on the same application, the toolkit should provide a
way to transform single-user scenarios into multi-user scenarios and provide means to handle
conflicts. At the same time, the developer should be released from having to handle the
effects which are caused by multi-user scenarios and should therefore be able to implement
and test in well-known (single-user) scenarios.

Grouping of devices

If Alice owns both a tablet and a smart phone she might want to simultaneously use one of
the devices for controlling the mouse pointer on the shared screen (e.g. the smart phone) and
the other device (the tablet) for text entry. To be able to do this, the two devices have to
be grouped to allow the system to interpret the events triggered by any of Alice’s devices as
originating from a virtual device spanning all physical devices that Alice owns. The toolkit
therefore has to ensure that her actions in the collaborative environment are annotated with
her user account regardless of which of the two devices triggered them.

Distribution of user interfaces

It might be interesting to distribute components of the user interface to different devices. One
of the most common examples of distributed user interfaces is having a painting application
where the canvas is presented on a big screen and the color palette is provided on a mobile
device.

The distribution of user interfaces not only implies issues of state replication and synchro-
nization between the different user interface components, which have to be solved to ensure
that all user interfaces react to the influences of actions executed on other devices, but also
raises the need for dynamic layouting mechanisms which allow the addition and the removal
of components at runtime on the different devices (e.g. when redistributing a graphical com-
ponent to another device). Besides the manual control of which element should be distributed
to which device, the toolkit should provide means to automate this process by enabling clever
algorithms to make the distribution of user interfaces more fluent, even in very mobile and
dynamic environments.

3.3 Choice of technology

The choice of technology can have a big impact on the viability of the toolkit. Therefore,
the choice was made based on the knowledge gained from the related work and on the
technological requirements mentioned above. After an overview of the different potential

3.3. Choice of technology 46

candidates, we present our decision making process as well as the implications and challenges
of our decision.

3.3.1 Priorization of requirements

Although all requirements defined in 3.2.1 should be considered in the technology decision,
some of them are more important than others. Therefore, we first priorize the requirements
and categorize them into “must have”, “important” and “nice to have” requirements.

“Must have” requirements

“Must have” requirements are those which have to be fully fulfilled by the chosen technology.
One of the most important goals is to establish a toolkit which can be used a long time in
order to support experiments during the whole duration of the project ICE. Future-safety
and developers’ acceptance are therefore two of these “must have” requirements since
different scientists and engineers will have to work with the provided solution over time.

Given our context, we want to support as many different devices and device types as possible
to be able to compare them and their influence on collaborative settings. Additionally, we do
not want to restrict collaboration to predefined settings but also take its natural dynamics
(in terms of users and devices) into account. The support of heterogeneity of devices
as well as the support of dynamics of devices are therefore essential as well.

“Important” requirements

“Important” requirements are those which can have a big influence on the capabilities of our
system but can – in case of multiple technology candidates – be relaxed if necessary. This
means that the main functionality of these requirements has to be achievable but compro-
mises can be made in the extent to which they are fulfilled.

The easy set-up of the system is an important aspect for the acceptance by end-users
as well as for allowing ad-hoc scenarios. In the best case, a true “walk-up-and-use” scenario
can be established, where only very little or almost no preparation work has to be done
before being able to use the system. Other requirements such as scalability and relia-
bility are important too because we do not want to restrict our collaborative settings by
technological limits but rather depending on the actual usability restrictions for the end-
users. Nevertheless, some natural limits are given (e.g. it is hard to imagine a synchronous
colocated collaboration scenario with a hundred participants or more). Therefore, scalability
is important to us only to a specific (realistic) limit.

3.3. Choice of technology 47

“Nice to have” requirements

“Nice to have” requirements are those which help to establish more comfortable and more
powerful collaborative solutions. Although it would restrict the capabilities of our solution,
the non-fulfillment of these requirements would not necessarily exclude the technology from
being considered in our decision making process.

Since in our scenarios personal devices can play an important role, the question of privacy
should be taken into account to make sure that no bad feelings arise due to privacy issues
when end-users are interacting with the system using their personal devices. The avail-
ability of toolkits and frameworks for the development of applications with a specific
technology helps to support the developers and therefore simplifies the development in im-
portant ways. Nevertheless, most issues are already overcome with the requirement of the
developers’ acceptance and therefore this requirement can be seen as a nice to have supple-
ment. Although very interesting for integrating new functionalities and making use of the
very special features of a specific device, access to low-level functionalities is only nice
to have as long as standard device functionalities are supported by the technology.

3.3.2 Technology candidates

The following categories contain different candidates of technologies which could be used to
realize a toolkit that fulfills our defined requirements. We talk about the advantages and dis-
advantages of the different possibilities and compare them, to be able to make a founded and
valid decision. We distinguish between native programming languages, which typically target
a specific type of platform or device type, model driven architectures and cross-compilers
and source to source translators which can make native technologies more portable and plat-
form independent languages which run on many different platforms by abstracting a specific
set of functionalities. Additionally, we present dynamic languages in general and web based
technologies (with and without plugins) and their possibilities for extension.

Native programming languages

Native programming languages target a specific platform and allow to make extensive use of
the resources of a device. Typically, they provide programming interfaces which offer low-
level access of device functionalities, making them quite powerful in terms of possibilities,
but also in the harm they could cause since they usually have very few restrictions on how
they can affect the main system (they usually have the same permissions as the system user
has).

3.3. Choice of technology 48

Advantages

Native programming languages let the developer address very device specific capabilities.
Developer access to (low-level) functionalities is only slightly or not at all restricted, which
helps customize and optimize programs for a specific device. The performance of native ap-
plications is usually rather good and their look and feel is in most cases consistant with the
operating system as well as with other applications which usually improves the user experi-
ence.

Disadvantages

Native programming languages on their own support only a restricted set of devices and/or
platforms. If a program needs to run on a heterogeneous set of devices, re-programming with
other native technologies is needed in most cases and is sometimes rather hard to achieve
due to the necessary adaption of low-level functionalities. Due to the manifold implementa-
tions needed in a heterogeneous environment, maintenance efforts can become an issue since
changes or bug fixes have to be applied to all versions of the program.

Native programming languages have difficultly handling unknown devices since they need
preprocessing (compilation) for the new platform they should support. Support for a new
type of device is therefore difficult to establish.

“Walk-up and use” is restricted when using native programming languages since the applica-
tion has to be installed on the device before it can be used. Additionally, since permissions
of a native application usually correspond to the system permissions of the executing user,
it is not easily possible to restrict the capabilities of that application at runtime. Therefore,
the users have to trust that the application does not do any harm to their private data. Al-
though mobile platforms in particular have several coarse-grained permission requests which
have to be accepted before installation (e.g. through the AppStore of Apple or Google Play),
users only have the choice to “take it or leave it” meaning that they cannot decide on specific
permissions but must either install the software and accept all permissions or decide to not
to install the software and therefore not to be able to use the functionality.

3.3. Choice of technology 49

Examples

C, C++, C#, Dalvik (Android) and Objective C (iOS)

Fulfillment of requirements
Requirement Category Description
Future safety Must have Good – Some of the native programming languages are widespread and

constantly adapted to new developments
Developers’ acceptance (well
established & well-known)

Must have Good – Some of the native programming languages are very well accepted
by huge communities of developers

Support of heterogeneous de-
vices

Must have Bad – With native languages, the software has to be re-programmed or
at least recompiled for new platforms

Support of dynamics of devices Must have Medium – The reaction to the dynamics of devices depends on the actual
implementation.

Easy set-up of the system
(“walk-up-and-use”)

Important Bad – Software developed with native languages usually has to be installed
on the device before it is ready for execution.

Scalability and reliability Important Medium – Scalability and reliability relies on the actual implementation
of the software

Privacy awareness Nice to have Bad – Native applications are hard or even impossible for the user to
restrict at runtime. Native applications therefore have the potential power
to misuse private data and resources when installed on a personal device.

Accessible low-level functional-
ities

Nice to have Good – Native applications usually do not have any restrictions on access
to low-level functionalities and are therefore able to provide them to the
application.

Availability of toolkits and
frameworks

Nice to have Good – For most native programming languages, various development
tools as well as third party libraries exist.

Model Driven Architectures, cross-compilers and source to source translators

Due to the disadvantages of native programming languages, different concepts exist for how
(especially) native applications can be made more portable between devices and platforms.

One of them is the definition of the program logic in a more abstract way through the use of
models. These models then generate actual program code in different shapes – e.g. in differ-
ent programming languages. Cross-compilers are able to compile a native code to different
versions of machine code (e.g. for different platforms) while source to source translators
translate (as their name says) the source code from one programming language to another
one.

Advantages

All of these “abstractions” help to reduce initial development and maintenance efforts since
changes have to be made only in one place. They allow to profit from a broader portability
of the application between platforms and therefore improve the support for heterogeneity.

3.3. Choice of technology 50

Disadvantages

The abstraction comes at the cost of less control over device specific implementations un-
less they are defined explicitly (e.g. by configuration of an alternative implementation for
a specific platform). Although these constructs help to increase portability, the number of
supported platforms in practice is usually still rather low and therefore, the issues of native
programming languages are solved only partially.

Fulfillment of requirements
Requirement Category Description
Future safety Must have Good – Since with these technologies, implementations in other technolo-

gies are generated, they are adaptive to the evolution of technologies and
could replace a technology if it is deprecated.

Developers’ acceptance (well
established & well-known)

Must have Medium – Model driven architectures are not very widespread and there-
fore not very well known to developers.

Support of heterogeneous de-
vices

Must have Medium – Although potentially applicable to many different platforms,
practice shows that the amount of different platforms supported by model
driven approaches is often limited

Support of dynamics of devices Must have Medium – The reaction on the dynamics of devices is depending on the
actual implementation.

Easy set-up of the system
(“walk-up-and-use”)

Important Bad – Resulting code is usually based on native programming languages
and therefore usually has to be installed on the device before it is ready
for execution.

Scalability and reliability Important Medium – Scalability and reliability relies on the actual implementation
of the software

Privacy awareness Nice to have Bad – Resulting code is usually based on native programming languages
and therefore the same restrictions for privacy ensurance apply.

Accessible low-level functional-
ities

Nice to have Medium – Although potentially accessible, low-level functionalities are
hard to use since model driven approaches define logic on a more abstract
level and device specific implementations therefore have to be made explicit
by re-definition.

Availability of toolkits and
frameworks

Nice to have Medium – Depends on the actually chosen technology

Platform independent languages

Platform independent languages such as Java run on all machines which have a runtime of
the specific language installed since the code is actually interpreted by an intermediate layer
– also known as a “virtual machine” (VM). The coverage of functionalities of that virtual
machine can differ depending on the implementation. For example the Java language dif-
ferentiates between the Java Micro Edition (JavaME) with fewer functionalities, the Java
Standard Edition (JavaSE) with standard functionalities and the Java Enterprise Edition
(JavaEE) with extended functionalities.

3.3. Choice of technology 51

Advantages

A platform independent language allows to write an application once and execute it on any
machine – independent of its platform or device type – as long as the machine has a corre-
sponding virtual machine installed. It is therefore not necessary to change and/or re-compile
the code for a new type of device that needs to be supported.

Disadvantages

To run a platform independent language a virtual machine must be available for the specific
device. For some devices no such virtual machine exists and for others only a reduced version
of that VM (e.g. JavaME) is available which might have restricted capabilities and thus not
be able to execute the application. This restricts the heterogeneity of supported devices and
could therefore prevent some users from participating in a collaboration. Additionally, since
the execution of such an application requires the pre-installation of the virtual machine, this
technology restricts the “walk-up and use” capability of the application as well.

Although a platform independent language runs in a sandbox (the VM) and therefore more
fine grained permission control would be possible, the manipulation of these values in practice
is not easily achievable (especially for users with limited technical knowledge) and many of
the possible configuration options are not at all editable.

Examples

Java, Groovy, Scala, JavaFX, Clojure, etc.

3.3. Choice of technology 52

Fulfillment of requirements
Requirement Category Description
Future safety Must have Good – Java and its virtual machine in particular are widespread and

adapt to new concepts regularly.
Developers’ acceptance (well
established & well-known)

Must have Good – A huge Java developer community exists and the language is very
well-known in academics as well.

Support of heterogeneous de-
vices

Must have Medium – Although Java code itself is platform independent, the need
for an interpreter which is not available for every platform reduces the
number of target devices.

Support of dynamics of devices Must have Medium – The reaction to the dynamics of devices depends on the actual
implementation.

Easy set-up of the system
(“walk-up-and-use”)

Important Medium – Although the installation of a virtual machine is required be-
fore code can be executed, this is a one-time installation which can then
be reused for other applications.

Scalability and reliability Important Medium – Scalability and reliability relies on the actual implementation
of the software

Privacy awareness Nice to have Bad – Although running in a virtual machine and therefore theoretically
configurable in terms of allowed functionalities, practice shows that inter-
faces and tools are seldomly provided to the end-user for such configura-
tions at runtime.

Accessible low-level functional-
ities

Nice to have Medium – Low-level functionalities can be accessed if the virtual ma-
chine provides direct access or through the use e.g. of interfaces to native
programming language (e.g. JNI).

Availability of toolkits and
frameworks

Nice to have Good – several mature development environments exist for such languages

Web browser plugin technologies

A special case of platform independent languages are plugin technologies of web browsers.
Most of these languages allow their execution in both environments – within web browsers
and standalone applications. Although the virtual machine is usually the same for both
modes, the permissions of the executed application differ.

Advantages

One of the main advantages is the possibility to execute the application in different modes
and therefore other permission settings. An application can – in case of doubts about its
trustworthiness – be executed either in the browser with a restricted set of functionalities
(and therefore a restricted risk of harm) or as a standalone application with a lot of capa-
bilities and therefore extended functionalities. Although such technologies typically require
the creation of two separate versions for the different modes, they can be based on the same
code for common functionalities which reduces efforts for maintenance.

Disadvantages

Again, a pre-installation (of the plugin or the virtual machine) is required and therefore
“walk-up and use” is restricted. Additionally, plugins do not exist for all platforms and

3.3. Choice of technology 53

browsers and there exists a chance that they will lose importance in the near future due to
the rise of more standardized technologies (HTML5, CSS3 & WebGL) for their main use
cases (typically animations and complex graphics).

Examples

Adobe Flash, Microsoft Silverlight

Fulfillment of requirements
Requirement Category Description
Future safety Must have Bad – Web browser plugins are usually proprietary solutions and can

be deprecated at any time. Additionally, HTML5 in combination with
CSS3 and WebGL might compete with these technologies and have several
advantages due to their degree of standardization.

Developers’ acceptance (well
established & well-known)

Must have Medium – Although developer communities exist for these technologies,
only a few applications have been created with these technologies, which
have been built for a long lifetime. Therefore, the establishment of these
technologies is not given in a long-term perspective.

Support of heterogeneous de-
vices

Must have Medium – Several plugin technologies do not support all main platforms
and therefore do not fully support a very heterogeneous set of devices.

Support of dynamics of devices Must have Good – Although the system architecture can still be varied, a technology
with client-side application execution allows to join and leave rather easily
because its existence does not affect the execution of the overall system as
long as they do not provide server functionalities.

Easy set-up of the system
(“walk-up-and-use”)

Important Medium – A one-time installation of the browser plugin is required. Once
installed, the application can be started by simple access of the URL within
a web browser.

Scalability and reliability Important Good – Although scalability and reliability relies on the actual imple-
mentation of the software, the reduction of importance of client devices
(because the disappearance of a client device does not affect the function-
ality of the overall system) helps to improve reliability.

Privacy awareness Nice to have Good – Web browser plugins run in a sandbox and are therefore restricted
by the plugin capabilities.

Accessible low-level functional-
ities

Nice to have Medium – An application written with this type of technology only can
access the low-level functionalities which are provided by the plugin tech-
nology. The plugin technology itself has full access to low-level function-
alities since it is written as a native application.

Availability of toolkits and
frameworks

Nice to have Medium – Although all web browser plugins provide development toolk-
its, these are mostly provided only by the company that owns them and
the number of these toolkits is therefore rather restricted.

Dynamic languages

Because of their nature, which allows the execution of dynamically added code at runtime,
dynamic languages are mostly interpreted script languages. For the interpretation, such lan-
guages need the availability of an existing interpreter for the platform they are currently
running on.

3.3. Choice of technology 54

Advantages

The dynamics of those languages lets them execute code at runtime, which allows to “inject”
code. This is an essential pre-requisite, especially for lazy code loading and execution. Addi-
tionally, they do not suffer as much from platform-dependency as long as they do not access
device specific libraries.

Disadvantages

These languages require – just as the platform independent languages – the availability of
an interpreter on the devices and platforms they support. The support of hetereogeneity
therefore directly depends on the availability of the interpreter.

Examples

JavaScript, Perl, Ruby, PHP, Objective-C, etc.

Fulfillment of requirements
Requirement Category Description
Future safety Must have Good – Dynamic languages usually have a very good adaptiveness to new

trends and are very flexible for extensions.
Developers’ acceptance (well
established & well-known)

Must have Good – Many of the most common dynamic languages of technology
have big developer communities and are applied in many different soft-
ware projects.

Support of heterogeneous de-
vices

Must have Medium – The support of heterogeneous devices varies between the dif-
ferent languages of this category. Some of them have a very broad support
because of their wide spread interpreter while others focus only on some
specific platforms and device-types.

Support of dynamics of devices Must have Medium – The reaction to the dynamics of devices depends on the actual
implementation.

Easy set-up of the system
(“walk-up-and-use”)

Important Medium – A one-time installation of the interpreter is required.

Scalability and reliability Important Medium – Scalability and reliability relies on the actual implementation
of the software.

Privacy awareness Nice to have Medium – Whether the application can be restricted in terms of func-
tionality to ensure privacy during runtime depends on the actual dynamic
language.

Accessible low-level functional-
ities

Nice to have Medium – Depending on the execution context, some of these languages
allow direct access to low-level functionalities while others restrict them.

Availability of toolkits and
frameworks

Nice to have Medium – The availability of toolkits and frameworks depends on the
actual language of this category.

Standard web technologies

Web technologies are based on the HTML markup language which can be styled by Cas-
cading Style Sheets (CSS). Modern web applications usually also contain ECMAScript (also
known as JavaScript) to add functionalities to the web page which are executed within the

3.3. Choice of technology 55

browser. Web applications which make use of JavaScript as well as asynchronous resource
loading are called AJAX (Asynchronous JavaScript And XML) applications. When we are
talking about standard web technologies, we are mainly talking about the full standardized
technology stack (HTML, CSS and JavaScript) while HTML and CSS are only used as the
representational layer (and therefore for visualization) and can be created and combined dy-
namically using JavaScript1.

JavaScript is a dynamic language and has a special position because of its widely distributed
interpreter (included in almost every web browser) and because of its distributed nature.
Additionally, it has interesting aspects in terms of “walk-up and use”.

Advantages

Standard web technologies run without installation or configuration and without re-compilation
of the application on any device running a (modern) web browser, which is pre-installed by
default on many devices.

Due to its wide distribution (the whole internet is based on these technologies), the probabil-
ity of longevity is rather high. Additionally, evolution of the technologies (especially HTML5,
CSS3, WebGL and web sockets) is providing new features to create rich user interfaces which
were not possible before.

Additionally, web technologies have a huge developer community which is supported by well-
established and feature-rich development kits (e.g. the Google Web Toolkit, jQuery, etc.).
Privacy can be ensured since web applications run in a very restricted sandbox (the web
browser). Nevertheless, several interfaces to device-specific resources exist (e.g. geo-location)
but the application has to ask for permission first and the users can decide if they want to
let the application access this additional element. The same is true for private data, since
local files on the device can only be accessed with explicit permissions from the user (e.g. by
the selection of a file in an upload dialog).

Disadvantages

Although the number of interfaces for extended functionalities (e.g. geo-location) is increasing
regularly, web applications still have a rather restricted set of functionalities. Additionally,
different web browsers interpret some definitions (in JavaScript, CSS and HTML) differently.
Although these issues are partially handled by frameworks and toolkits, this makes develop-
ment less comfortable. Since web applications cannot define their own communication layer
but have to make use of the ones provided by the web browser, they are rather restricted in
how they can communicate. The standard protocol HTTP has issues with increased over-

1Although JavaScript is a dialect of the ECMAScript standard and therefore contains additional functionality,
we are using the terms synonymously in this thesis

3.3. Choice of technology 56

head for several applications and the uni-directionality of such communication channels (the
communication can only be initiated by the web browser but not by the web server). This
implies several issues, especially for real-time applications.

Although the communication issues will be solved (at least partially) by the introduction
of web sockets, and work-arounds for bi-directional communication for compatibility with
legacy browsers exist, network performance will probably never be as optimal as with appli-
cations developed with other technologies.

Examples

HTML, CSS, JavaScript

Fulfillment of requirements
Requirement Category Description
Future safety Must have Good – Because of the masses of already existing content and applica-

tions, backwards-compatibility is implicitely ensured. Additionally, the
technology adapts rather fast to new concepts and ideas.

Developers’ acceptance (well
established & well-known)

Must have Good – A huge community of web application developers exist and web
applications are used as front-ends for very important and long-term ap-
plications in practice.

Support of heterogeneous de-
vices

Must have Good – Every device that runs a web browser with JavaScript is sup-
ported.

Support of dynamics of devices Must have Good – Although the system architecture can still be varied, a technology
with client-side application execution allows to join and leave rather easily
because its existence does not affect the execution of the overall system as
long as it does not provide server functionalities.

Easy set-up of the system
(“walk-up-and-use”)

Important Good – Because web browsers are often pre-installed on many devices,
no pre-installation is required, and the application can be immediately
accessed by a single URL request.

Scalability and reliability Important Good – Web technologies have been developed from the beginning to
support multiple clients at the same time. By appropriate distribution of
the load between the server and the client, further improvements can be
achieved in terms of scalability and reliability.

Privacy awareness Nice to have Good – Web applications run within the browser sandbox which is rather
restrictive and therefore does not allow a web application to access private
data unless it is explicitely allowed by the user.

Accessible low-level functional-
ities

Nice to have Bad – Access of low-level functionalities which are not provided by the
web browser are not accessible directly.

Availability of toolkits and
frameworks

Nice to have Good – Several tools and frameworks as well as third party libraries exist
for the development of web applications.

Extended web-technologies

Projects exist (e.g. [115]) which wrap web applications with a standalone native client that
provides JavaScript interfaces for native resources. That way, the restriction of the sandbox
can be overcome if a user wants to make use of extended functionality by installing a “native”

3.3. Choice of technology 57

application.

Advantages

Web applications can – similarly to plugin based web applications – be run in two different
modes: either with a restricted set of functionality but without privacy issues and installation
needs, or with extended functionalities (including potential dangers).

Disadvantages

Besides the need to install software, one of the main disadvantages is the use of non-
standardized APIs which have to be adapted if the application has to switch to another
framework, or if a similar but not identical interface is standardized and included within the
HTML/JavaScript specification.

Examples

Phonegap[115], Appcelerator Titanium[94]

Fulfillment of requirements
Requirement Category Description
Future safety Must have Good – The technology is based on web technologies and therefore has

the same future-safety.
Developers’ acceptance (well
established & well-known)

Must have Good – Development is made with web technologies which are accepted
by developers.

Support of heterogeneous de-
vices

Must have Good – Devices which do not use the extended version can still execute
the standard web application.

Support of dynamics of devices Must have Good – Although the system architecture can still be varied, the technol-
ogy with client-side application execution allows to join and leave rather
easily because its existence does not affect the execution of the overall
system as long as it does not provide server functionalities.

Easy set-up of the system
(“walk-up-and-use”)

Important Good – It is up to the users to decide if they want to install an extra
application or if they want to interact with the web application without
the need for installation.

Scalability and reliability Important Good – The arguments for scalability and reliability of standard web
technologies apply to extended web technologies as well.

Privacy awareness Nice to have Good – It is up to the users to decide if they want to execute the na-
tive application (which provides more functionalities but could also access
private data) or to use the restrictive web application.

Accessible low-level functional-
ities

Nice to have Medium – The extended web technologies allow to access more low-
level functionalities (the ones which are provided by the actual extension)
than would be possible with standard web technologies executed in a web
browser.

Availability of toolkits and
frameworks

Nice to have Good – Toolkits, frameworks and third party libraries of standard web
technologies can be reused.

3.3. Choice of technology 58

3.3.3 Technology decision

Based on the different advantages and disadvantages, the technology has to be chosen very
carefully. The comparison matrix in Figure 3.1 shows that several technologies are better
suited for collaborative applications than others. While almost all of the different categories
have representants which are well-known and well-established, future-safety – although hard
to predict – seems to be very unclear for specific web browser plugin technologies (due to the
competition with new evolutions of the standard web technologies).

The support of a hetereogeneous set of devices is one of the biggest advantages of web tech-
nologies while it is very hard to achieve with native programming languages since code has
to be manipulated and/or recompiled to support multiple platforms.

Although possible with all types of technology, the support of the dynamics of devices some-
times has to be handled in more complex ways and is not directly supported by the technology
itself and might need to be achieved using third party libraries.

The set-up of the system is mainly a problem when using native programming languages since
the user has to pre-install the software to be able to interact with the system. Platform inde-
pendent languages, web browser plugins as well as dynamic languages require pre-installations
as well, but since they only need the one-time installation of a common interpreter, the com-
plexity of installation is less of an issue. Web technologies do not need an installation at all,
letting the user interact with the system by simply accessing a specific address through a
web browser (which is installed in most systems by default).

Scalability and reliability depends on the actual realization of the software. Nevertheless,
some technologies offer more advanced support for scalable and reliable infrastructures due
to their origins (e.g. because web-technologies were built to support the interaction of large
amounts of users).

Privacy is not easily controllable in non-web-based applications since they have the potential
power to misuse their extended functionality. On the other hand, this is the main disadvan-
tage of web technologies: low-level interfaces, as well as sensors, are not directly accessible
by them and therefore possibilities are restricted to a subset of functionalities.

The availability of toolkits and frameworks is given in most cases. Nevertheless, especially for
less known or proprietary technologies (such as most web browser plugin technologies), only
a few tools exist and which are not easily extensible for the support of new functionalities.

3.3. Choice of technology 59

Figure 3.1.: Comparison matrix for technology candidates

Decision

Despite some of the restricted possibilities, we decided to use web technologies to develop
our toolkit. The main reasons for the choice were the incomparable support for a very het-
erogeneous set of devices and for a true “walk-up and use” scenario, and the extensibility
and future-safety of the technology. Privacy awareness, support and broad acceptance in the
developer community, as well as the possibility of lazy code loading also enforced the decision
for this technology.

The opinion that web technologies are well suited for collaborative application and could
become important for them has come up more often recently (cp. [58], [30]) – especially be-
cause of the current evolution of new standards which are supported by most new generation
browsers, including those for mobile platforms: "There is a strong need for better tools in
this area – e.g., groupware toolkits that use Web technologies, and development environments
for Web applications." [30]

Since the functionalities as well as the possibilities of optimization are very restricted by the
browser sandbox with this technology, ways have to be found and integrated into the toolkit,
for nevertheless realizing functionalities which are necessary for collaborative applications.
Additionally, although several instances of fundamental support for the mentioned require-
ments (e.g. code and layout distinction between different devices) exist, clear concepts and
structures for how the requirements can be fulfilled are still missing and have to be defined.

Several toolkits exist to support the development of web applications, and most of them have
concepts and functionalities necessary for overcoming the differences between the different
browser implementations. Others go beyond these simple functionalities and provide even

3.3. Choice of technology 60

more complex structures. Most of these toolkits are purely JavaScript based and provide
their functionalities as JavaScript libraries (e.g. jQuery). The Google Web Toolkit is a
special type of toolkit for web applications – the program code is written in Java and then
compiled into optimized JavaScript.

The Google Web Toolkit and JavaScript

Due to its non-modular approach, writing, testing and debugging Web applications in Javascript
can be a difficult process laden with errors [. . .]. GWT makes this process less painful by allow-
ing programmers to write applications in traditional Java code, which can then be translated
by the GWT compiler into Javascript applications ready for deployment on the Web [. . .].[58]

Everything which can be done by the Google Web Toolkit would be possible with handwritten
JavaScript as well since it does not add any functionality to the standard web technologies
but rather adds structures and supports an improved development process.

Although the main part of JavaScript is standardized as ECMAScript, the interpretation of
the code is still different between browsers. Toolkits like GWT help to overcome these issues
by compiling Java code and creating different files of JavaScript which are customized for
interpretation by the different browsers. Since the differences are handled at compile-time,
browsers do not have to download code which is tailored for a different browser, as is often
the case in cross-browser libraries. Additionally, bandwidth can be saved and the program
code can be optimized.

Since differences between the browser implementations are usually rather small, the Google
Web Toolkit contains a mechanism that allows to redefine partial detail implementations
which are then recombined in browser specific combinations: If browser A interprets a func-
tion differently from browser B, an alternative implementation for that single function can
be defined and results in two different JavaScript code files. Browser A will then download
only that code file which contains the appropriate code. This way, all functionality which is
common to both browsers can be re-used and only special cases have to be handled.

This functionality called “deferred binding" in GWT terminology is not only very well-suited
for alternative implementations of standard functions of the JavaScript language but can also
be used for the definition of alternative implementations of other application components.
Other than the “user.agent” property (and therefore the distinction of different browser types)
any other information accessible through JavaScript can be used to separate implementations
based on device specific properties (e.g. screen size, touch capabilities, etc.)

Another concept introduced by the Google Web Toolkit is “code splitting” where split points
within the standard code flow can be defined. The compiler then splits the code into multiple

3.3. Choice of technology 61

JavaScript source files and loads them at the time when the code execution reaches the split
point. This functionality not only helps to reduce the overhead of downloading the whole
application at start time, but also lets the developer define pieces of code which may not need
to be be downloaded at all (because the user does not make use of a specific component) and
therefore to save resources on the network as well as on the device (because the code does
not need to be stored in the cache and/or analyzed by optimizers of the JavaScript engine).

Since code for the Google Web Toolkit is written in Java before being translated to JavaScript
by the toolkit itself, the toolkit improves the integration, especially with Java based server
backends. Additionally, it allows experienced Java developers to become familiar with the
toolkit in short time and therefore increases the number of potential users of the toolkit.
Compatibility with standard native JavaScript is achieved by the so called JavaScript Native
Interface (JSNI). Therefore, developers can choose if they want to write their code in Java
or JavaScript and can profit from the integration of other JavaScript libraries. The well-
structured and type safe language Java allows to define a clean interface with good guidance
and development rules and is supported by many powerful development environments and
tools. Optimizations can be achieved by JavaScript code obfuscation (which usually results
in reduced file sizes compared to hand-written code, and therefore optimizes network load) as
well as code optimization algorithms, bundling of resources (e.g. composition of images into
collections to reduce server round-trips), obfuscation and bundling of CSS files and more.

Since one of the requirements for the toolkit was to not be dependant on a proprietary tech-
nology that could be deprecated anytime, it is important to mention, that if GWT disappears
the written code could easily be exported in human-readable JavaScript and therefore is not
fully dependent on the continuation of the Google Web Toolkit.

The advantages mentioned, and especially the “deferred binding” provided by GWT, which
is very well suited for our requirement of device specific adapations, were the factors that led
to our choosing GWT as the base for our extensions for collaborative work. Although it is
hard to predict, we feel that there is a good probability that GWT will have longevity since
Google itself has based several bigger projects on the technology of GWT and its developer
community is constantly increasing.

Backend technologies

For the server backend, web technologies give the freedom of many different technologies
which provide the functionalities needed for a web application: PHP, .NET as well as Java
to name only a few among a very heterogeneous set. Due to the extensive use of client-side
functionalities, modern AJAX applications (e.g. applications written in GWT) relax the
functional requirements for the server side. Nevertheless, several communication interfaces

3.3. Choice of technology 62

have to be established and especially more complex functionalities that require special re-
sources or more computational power than a browser could provide have to be realized on
the server side. Although, potentially, all possible backend technologies could be supported,
we have chosen Java for the current implementation. The simplified integration with the
GWT code (since both the client and the server side can be written in the same program-
ming language and even share some common code) as well as the platform independence,
and therefore the better portability between potential server devices (Java web server con-
tainers even exist for smart phones: cp. with iJetty [105]), give an increased flexibility for
the deployment. Additionally, external services (such as dynamic servers in the cloud) exist
for the Java technology, which supports the choice of a technology that can be applied in
many different situations.

3.3.4 Implications and challenges

The choice of using web technologies has, as already mentioned, several implications on
the capabilities of the resulting toolkit. The cost for platform-heterogeneity and privacy
awareness are the restricted functionalities brought on by the sandbox (the web browser)
environment that a web application is running in. Although concepts for increasing capabil-
ities using special extensions (e.g. PhoneGap) exist, the main issues – of which some are the
main advantages at the same time – are impossible or not easy to overcome.

Bi-directional communication

One of the main issues with web technologies is the set of communication standards which
is available. Since a web application does not have access to network resources by itself, it
is only allowed to use the interfaces which are provided by the browser, and these are very
restricted. Before the introduction of web sockets (which is at the moment of writing still
a draft specification and not implemented in all major browsers), the only communication
protocol accessible by web application were HTTP requests.

Due to the nature of the HTTP protocol, the connection always has to be initiated by the
client, meaning that the server has no directly supported way of sending information to the
web browser explicitly (“server push”) but instead has to wait until the client has sent the
next request to provide the new data. Although several work-arounds arose (under the name
“comet” – cp. [30, p. 170]) which vary depending on the capabilities of the web server as
well as of the web browser (e.g. long polling, iframe streaming, etc.), some of these con-
nections suffer from rather poor responsiveness and sometimes very inefficient network use.
Additionally, the HTTP protocol has (compared to other network protocols) a relatively big
overhead because of its header data. Due to these disadvantages, as well as to reduce server

3.3. Choice of technology 63

round-trips, best practices appeared (like bundling multiple resources to a single result ele-
ment, as well as compression of transferred data). Nevertheless, performance is still an issue
when trying to achieve bi-directional communication between server and client by means of
HTTP.

The technological evolution called “web socket” is an attempt to define a standardized bi-
directional communication protocol that reduces the above disadvantages. But, since the
specification of this new technology is still in progress and, especially on the back-end side,
many possible implementations exist, more abstract toolkits are needed to let the devel-
oper ignore all of the existing differences. Luckily, work has been done in this direction and
libraries such as the “atmosphere framework” (cp. [95]) which provide an abstract program-
ming interface that negotiates the bi-directional communication (based on the capabilities
of the browser and the server), supports web sockets and falls back to the most appropriate
comet implementation if needed, have just been released.

Although the evolution of web technologies is moving in the right direction and offering
many new opportunities, it is clear that web technologies will probably never allow the fine
grained control of network communications that would be possible with native applications
(e.g. lacking support of light-weight protocols like UDP).

Although not optimal, Gutwin et al. [30] show that performance of bi-directional communi-
cation with web-technologies can be sufficient even for real-time applications if the number
of exchanged messages can be kept considerably low (cp. 5.1.1).

Browser incompatibilities

As mentioned before, there exist browser incompatibilities in interpreting HTML, CSS and
Javascript. Additionally, many proprietary extensions of these technologies that have ap-
peared are not standardized, and therefore not supported by all browsers. Nevertheless,
developers have gotten used to these – often very useful – functionality extensions and ap-
plied them as soon as they were integrated into the most common web browsers. Something
which can be seen very often for additional functionalities is that, although they provide the
same effects, the syntax for the specific element differs (e.g. by introducing browser-specific
prefixes for CSS-properties like “-moz-. . . ”) for different browsers.

The developer – again facing the trade-off between extended functionality and standard com-
patibility (and therefore support of most web browsers) – usually has to be aware of all the
different ways of implementation as well as possible fall-back solutions for browsers not sup-
porting the extended functionality, which is quite difficult to achieve. That is why several
frameworks and toolkits have been built which try to abstract these incompatibilities for
common functionalities and which usually allow developers to react to such different imple-

3.3. Choice of technology 64

mentations and manage those which were not captured by them yet.

The Google Web Toolkit provides – in addition to the already presented “deferred binding”
concept to react to different JavaScript structures – the functionality of conditional CSS,
where different styling configurations can be defined for different web browsers. Since the
HTML structure of a GWT application is usually built entirely in JavaScript, HTML incom-
patibilities between browsers can be handled by the deferred binding mechanism as well.

Performance

Compared to other (compiled) languages, JavaScript interpretation is less performant due to
its interpretational part as well as due to its single-threaded nature (although concepts such
as “web workers” are coming up but are not yet mature enough to be applied). Nevertheless,
a lot of effort has been put into the improvements of the Javascript interpretation engines
of all major web browsers to prepare them for new types of web content – so called Rich
Internet Applications (RIA) which try to achieve a user experience almost as rich as native
applications. Additionally, optimizations can be achieved by writing more efficient code.
Code optimizers and code obfuscation help to reduce the load of the application and adaptive
implementations (e.g. dynamic manipulations of message sending and processing interval
depending on the available resources) help to reduce the amount of code that has to be
executed at once.

Scalability

Web applications were originally built to support a very lage number of clients. Although
extensions such as bi-directional communication reduce the amount of that scalability a little,
the technologies themselves still profit from the many established tools to react to a higher
demand for resources. Scalability of web applications therefore can be controlled in a fine-
grained fashion based on available resources and demand. It either can be run on a single,
central web server instance (e.g. on a smart phone or a computer), best suited for private or
semi-private scenarios with a restricted number of clients, on a professional hosting solution
with managed server management (either a single server or a clustered environment) usually
accessible through the web (or in a more complex local area network), or it can even be
published in the cloud with dynamic resource aggregation at high demand peaks. Peer2peer
situations can be built by having web servers installed on every device involved, while hybrid
peer2peer solutions involve only some of the devices which are running a web server and which
are communicating directly with each other. The shift of the main part of the functionality to
the client side (to the web browser) can improve scalability even further since the potential
bottlenecks (the servers) act mainly as code providers and communication gateways, and

3.4. System architecture 65

therefore do not have to execute complex calculations or other heavy load functionalities.

Web technologies are therefore very adapative to many different scenarios and can be applied
in many different situations without the need for code adaptations.

Restricted access to resources

Web applications cannot directly access hardware (e.g. sensors) as well as the filesystem of a
device because of the sandbox they are running in and communication restrictions (e.g. the
“same-origin policy” which only allows to communicate with the same host that the current
web page originates from) make access to special resources very difficult. Although new,
standardized interfaces for hardware access are built as part of HTML5 (e.g. geo-location,
video-camera, etc.) so the amount of control will be restricted compared to the native access
of such components. Alternatives to provide access to those functionalities are tools like
Phonegap – where the user has to install the web application as a native app and is then able
to access the components by non-standardized APIs – or the definition of other accessible
interfaces (e.g. RESTful) by applying a local “server” on the device which redirects the
commands to the component. Indepedently of how resources are extended, installations of
native code – and therefore the lack of true “walk up and use” functionality – is inevitable and
new security and privacy issues can arise. Additionally, portability of these functionalities is
restricted which is why such work-arounds should be used very cautiously.

3.4 System architecture

The choice of technology as well as its implications and challenges affect the system architec-
ture. Therefore, we will present the types of structures that are possible given our technology
choice, how the functionalities are distributed between the client and the server side, and how
the communication paths are built between devices as well as software components.

3.4.1 Overview

Since we want to make sure that our applications can run in different environments, we split
the functionalities into server and client side components and define which functionalities
shall be provided by which part. Depending on the actual system architecture that a specific
collaborative setting has, the devices involved have to either be a client, a server or both.
In Figure 3.2, the three main types of system architectures are shown, where the different
devices involved have different roles. In client-server architectures (A), we have pure clients
which are either accessing a local server (which can be a client as well) or they are accessing

3.4. System architecture 66

Figure 3.2.: System architectures: Client-server with optional cloud resources (A), peer2peer
(B) and hybrid peer2peer (C)

dedicated servers in the cloud.

In pure peer2peer situations (B) all of the devices involved are servers and (usually) clients
at the same time, replicating the application state between themselves.

In hybrid peer2peer architectures (C) some dedicated devices are servers (and potentially
clients as well) while other devices are clients only, accessing one of the “super-peers”.

While the pure clients do not need to have any installation, and only need to connect to a
server through their web browser, the server components have to be installed on a device first.
Therefore, architecture B (pure peer2peer) is less suited for a “walk-up and use" scenario than
architectures A or C. Additionally, architecture B might not be realizable due to the lack of
availability of the back-end technology (in our case Java) for some of the device platforms
involved. That is why the probability of architectures A and C is much higher.

Since architecture C (and B) can be created by extending architecture A when integrating
additional server instances and establishing synchronization between them by standard means
(clustering, distributed databases, etc.), we focus on architecture A in the following sections.
Nevertheless, the solutions that we show are equally valid for architectures B and C as well.

3.4. System architecture 67

3.4.2 Work load distribution

Depending on the amount of available server instances, one device might need to handle
many clients at the same time. Therefore, the distribution of the work load is essential
for preventing breakdown of devices with server functionalities due to a significant load of
functionalities they have to fulfill.

The distribution of the functionalities that should be provided to either the client or the
server instances always implies several tradeoffs. A server oriented approach, where most
or even all of the functionality is executed on the server side, relaxes the constraints on the
clients. On the other hand, it increases the requirements for the server instance since that
device has to run the application for all of its clients. By putting more functionality onto the
client devices, a better distribution of the work load is achieved. Unfortunately, this involves
more complex coordination and messaging, and the application performance actually depends
on the capabilities of the client.

Especially in ad-hoc collaboration, the server might be a standard device that does not
have the same high-performance capabilities as traditional web servers. However, it still has
enough power to handle basic server tasks, although some functionalities should then be
off-loaded to client devices to lighten the load. Therefore, and since even small and mobile
devices provide good enough hardware capabilities to execute more complex applications on
their own today, we have decided to move most functionalities to the client side and therefore
to relax the requirements for the server side.

Additionally, we want to make sure that the server is very loosely coupled to the clients and
therefore should provide its functionalities “stateless” whenever possible, meaning that the
functionalities should not need to store client specific information to handle its request. This
helps to minimize the overhead and makes the system more flexible in handling appearing
and disappearing devices.

3.4.3 Server side functionalities

Since the functionalities executed on the server shall be minimized, we have decided for the
following general functionalities which must be executed on the server: Application code
and resource provider, gateway, external network connection, synchronization, management
functionalities and extended functionalities.

3.4. System architecture 68

Application code and resource provider

The application code has to be located somewhere, ready to be accessed by the client
instances. The provision of the actual JavaScript files and other resources (e.g. images,
stylesheets, etc.) is obviously one of the main functionalities of the server side.

Besides the static application code, the server may be used to share dynamic content as well:
If a user wants to share a picture, the picture can be uploaded to the server, stored and made
accessible for other users.

Gateway

The server mainly acts as a gateway for the clients. Since web clients cannot (yet – cp. [124])
communicate directly (cp. Figure 3.3), they can use the server functionality to reroute their
messages. In addition to simple message passing, this can involve some control mechanism
as well (e.g. message-ordering, message-validation, etc.).

Figure 3.3.: Direct communication between clients is not (yet) possible with web technologies
and therefore has to be rerouted by the server

External network connection

The server might act as a proxy for the access of resources outside of the collaborative setting
(e.g. the internet). By acting as a proxy, a server can add functionality to the accessed content
(cp. 4.3.5).

Synchronization

If multiple server instances participate in the same working session, their application state
has to be replicated and kept in sync during execution. Additionally, they have to make sure

3.4. System architecture 69

that the message-passing of the gateway functionality is transferred to the other servers as
well. Elaborated mechanisms (such as messaging systems, distributed databases, etc.) which
solve the problems mentioned before, as well as clustering functionalities, are available for
most of today’s web server implementations and therefore can be realized with the support
of well established technologies.

Management functionalities

Some information is more easily accessible on the central instance of a server – such as
information about devices involved, logged in users, etc. Therefore, some management func-
tionalities have to be provided by the server side such as device grouping, decision about
and control of the distribution of user interfaces as well as functionalities for auto-calibration
(e.g. the initiation of a architecture change by aggregating or releasing other servers).

Extended functionalities

Some functionalities just cannot be achieved by client side JavaScript and therefore have to
be executed on the server. Dynamic image generation and processing, complex calculations
and control of external devices are just a few examples.

3.4.4 Client side functionalities

As mentioned, most of the functionalities should be executed on the client side to achieve
a better load balance between the devices. In addition to the actual program logic, the
following – more general – functionalities should be under the control of the client devices:
Security, layouting, management functionalities (manual configuration) and the execution of
the application modules.

Security

Although usually security is a topic for the server side, in ad-hoc scenarios the server might
be owned by somebody unknown and therefore not trustworthy. Therefore, sensitive data
has to be protected from disclosure to the server side as long as the server itself is not one of
the recipients. To ensure these requirements, messages have to be encrypted before they are
transmitted and credentials have to be exchanged very carefully.

3.4. System architecture 70

Layouting

The distribution of user interfaces requires a very flexible layout on the different devices
which is capable of handling appearing as well as disappearing components at runtime. Since
this layout depends on the specificities of a device, the concrete layouting has to be processed
on the client side.

Management functionalities (manual configuration)

Other than the overall management functionalities processed on the server side, the user
should be able to overrule some decisions like the distribution of user interface components.
The client side should therefore provide a generic way of customizing the settings of the
available parameters of both the overall application as well as the single components.

Execution of the application modules

The different application modules have to be instantiated and their life cycle has to be
controlled by the main application. Therefore, the client side has to make sure that the
modules are loaded, executed and terminated properly.

3.4.5 Communication

The communication structure is an important part of the overall system architecture and
differs depending on the chosen strategy. While the way of communications between the
client and server is rather restricted (because of the limitations of web technologies), commu-
nication between servers is less restricted since they have different protocols and mechanisms
available. The actual realization of our toolkit therefore focuses mostly on the optimiza-
tion of the bi-directional communication between clients and servers because server to server
communication and the state replication between them is a more common use case and is
addressed by already existing solutions (e.g. replicated databases, messaging systems, etc.).

To be able to establish the necessary state replication of real-time applications running on
different clients, the establishment of a bi-directional communication between the server and
its clients is a strict requirement. Since the type of bi-directional connection (web socket,
comet) which can be established depends on the server as well as on the browser, the com-
munication structure has to be negotiated for every client and therefore suffers from varying
network latency values.

3.4. System architecture 71

Messaging organization

Due to the rather restricted data throughput achievable in most bi-directional communica-
tion solutions for web technologies, the way in which the messaging is organized has to be
considered very carefully.

Since the message channels between the client and server are very restricted, the way in
which messages are sent has to be set appropriately. Therefore, the client has to optimize
the messages which should be sent out to the server (e.g. by collecting messages and sending
them bundled) and organize the handling and interpretation of received messages. Since this
functionality is a very essential part of collaborative applications, it should be built into well
established and easy to understand components of the framework (cp. 4.2.1).

Secure messaging

To ensure the non-disclosure of messages to non-authorized devices when they are routed
through servers which may not be authorized to read them, the messages have to be encrypted
on the client side. Therefore, every client has to generate a private-public key pair which
allows to either encrypt the message in a device specific way, or to exchange symmetric
encryption keys for communication between a group of devices.

3.4.6 Set-up

The set-up of the system depends on the system architecture that will be used. The most
simple set-up is the use of a pre-setup system with one or multiple servers either in the local
area network (LAN) or in a wide area network (WAN) (e.g. in the cloud).

That way, no action has to be taken by the user on the client and all collaborators can work
together simply by connecting to the same network and accessing the same web-page.

For systems without pre-setup servers, at least one of the clients has to install a runtime (in
our case any Java Servlet container) as well as the collaborative application. This installation
is a standard installation process and should not need special technical knowledge of the user.
Additionally, a common network has to be established – either an already existing network
can be used (e.g. a publicly available WLAN), a wireless LAN can be set-up by the use of
a standard WLAN router or an “ad-hoc”-WiFi network can be set up if supported by the
involved devices.

3.5. Discussion 72

3.5 Discussion

Based on the context of our project as well as on the requirements, we want to develop
a toolkit which is future safe and which allows to develop applications which are platform
independent, scalable, dynamic, easy to set up and controllable by the end-user in terms of
access permissions of the application to potentially sensitive data. We have found that all of
these specificities can be supported by web technologies and have therefore decided to create
our toolkit with this technology, even though it involves several restrictions that have to be
overcome.

The toolkit shall – as Roseman and Greenberg have stated – help to let “[. . .] the artificial
distinction between constructing single and collaborative systems [. . .] disappear" [65] and
therefore be based on APIs and concepts which are already well established for standard
(single-user) application development and – in the best case – the developers will be unaware
that they are actually writing a multi-user application unless they have very special needs
and want to achieve non-default functionalities.

The toolkit should be extensible to support the manifold needs which will arise in the future,
as well as for the easy replacement of single components of the system (e.g. to adapt to
different capabilities of devices). Nevertheless, standard functionalities which are used in
most collaborative scenarios should be provided by implementations ready to use by end-
user applications but also prepared to be extended and optimized by other developers.

Last but not least, the toolkit should ensure that the set up and the use of the system is as
simple as possible. Aware that a toolkit for collaborative applications can only be successful
if it is not only accepted by the developers but that the developed applications are launchable
and accessible in a simple and fast way by end-users (the actual collaborators), tools have
to be provided to reduce to a minimum the effort and technical knowledge for accessing a
computer supported collaborative session.

4
Toolkit

4.1. General concepts . 74

4.1.1. Modules . 74

4.1.2. Coding conventions and concepts . 78

4.2. Basic functionalities . 81

4.2.1. Distributed eventing mechanism . 82

4.2.2. Security . 85

4.2.3. Device grouping . 87

4.2.4. Layouting . 87

4.2.5. Multi-user support . 90

4.2.6. Easy access . 93

4.3. Software modules . 94

4.3.1. Drag and drop . 94

4.3.2. Remote mouse controller . 96

4.3.3. Remote keyboard . 98

4.3.4. Extended widgets for multi-user and multi-device contexts 99

4.3.5. Collaborative web browsing . 102

4.4. Use of the toolkit in practice . 103

4.4.1. Module development . 104

4.5. Comparison with standard GWT 105

4.6. Discussion . 106

After having elaborated the requirements which have to be fulfilled to fill the need for a generic
toolkit for collaborative applications, in this chapter we present a concrete realization of such
a toolkit. We will show which concepts and structures we have integrated and which issues

73

4.1. General concepts 74

(and therefore which basic functionalities) we addressed. We will also show how we have
realized different software modules which can be seen as proof of concept implementations
and which can act as examples, of how modules for collaborative applications can be extended
or created.

4.1 General concepts

As mentioned in the specification section, we did not want to build a new toolkit from scratch
but rather profit from mature concepts and implementational parts of already existing and
well established toolkits, so we chose to base our extensions on GWT. To make the integration
of our extensions as smooth as possible, we needed to follow the concepts of GWT itself as
well as more general structures and code conventions of Java (since GWT builds on Java).
But, we also had to introduce new concepts to cover issues of the multi-user and multi-device
scenarios we want to address, and which we tried to keep as close to the existing ones as
possible to allow developers to find our extensions easy to learn and to apply.

4.1.1 Modules

The requirement for building a toolkit which suits the very different needs that could arise
in collaborative applications necessitates the concept of modularity. Functionalities have to
be split up into smaller components which are replaceable and dynamically recombinable.
Therefore, we present how these different modules can be integrated and combined into
an actual application, how they can be configured at runtime and how they can be made
self-adaptive to the situation at runtime through automatic adaptation of their properties.

General module concept

Although the Google Web Toolkit already has a concept of modules, the understanding of
these modules in GWT terminology is the simple separation of parts of code into different
components which can be combined to reuse the module’s functionalities. Since we want to
go one step further and let a module not only contain a specific part of code but we also want
to have its life cycle under control, and to be able to distribute, start, stop and configure
it programmatically the module concept of our toolkit is closer to the life cycle concept of
OSGi [113] than of GWT – although its realisation is based on the fundamental structures
of GWT modules.

The definition of a module is very lightweight in our case. All that has to be done to create
such a component is to implement the interface TWICEModule<M extends Widget> where M is the

4.1. General concepts 75

class of the main widget (which can be any standard GWT widget) which will be attached to
the application. The interface defines (besides methods to control the appearance in the final
application) two main methods: void start (M instance); which defines what should be executed
when the module is started and void stop(M instance); which defines what should be executed
when the module is stopped (e.g. freeing memory, stopping regular notifications, etc.).

Additionally, a module can define fields in its implementation which should be configurable
by simply adding the annotation @Configurable to the field to configure. Thanks to the “deferred
binding” mechanism, our toolkit generates the necessary code to provide automatized as well
as manual configuration methods (through the layouting system – cp. 4.2.4).

Additionally the toolkit functionality handles the lazy instantiation process of the module
(cp. Resource savings by lazy code loading in 3.2.2): The implementation of the TWICEModule<M

extends Widget> is instantiated as a lightweight placeholder filled with the configuration settings.
Therefore, it is strongly recommended not to let the widget (M) implement the interface
directly but rather to create a standalone class for the TWICEModule. The heavy-weight
widget (M) with its full implementation is not instantiated (and therefore does not occupy
resources) until it has been accessed for the first time. On first access, the lightweight
placeholder is invoked, which causes the instantiation of the main widget, its configuration
and addition to the layout and therefore its integration into the application. Finally, the
start method of the module is invoked, which triggers the execution of the module.

Device dependent modules through “deferred binding”

One of the main reasons for having a modular approach is the possibility to react to the
different devices on which a collaborative application could be executed. Therefore, the dif-
ferent capabilities of the devices involved have to be analyzed and appropriate modules have
to be delivered. A device might support multiple different implementations and therefore
choose the most suitable one while still offering the alternatives to the user for overruling
the system’s choice (e.g. because the alternatives match the needs of the task better, are
preferred by the user for personal reasons, or the logic which has to judge the suitability
makes a non-optimal decision).

The previously mentioned concept of “deferred binding” in GWT (cp. 3.3.3) was mainly de-
veloped to allow the separation of code for the different web browsers to handle the varying
interpretation of JavaScript. The fundamental idea of deferred binding is to create mul-
tiple versions of the application at compile time while defining some decision logic which
chooses which version of the JavaScript code matches with the current client and should be
downloaded and executed (in its standard use, the “user.agent” information about the clients
browser type and version is used to separate implementations e.g. between Webkit-based

4.1. General concepts 76

<def ine−proper ty name=" deviceType " values=" cursor , touch " / >
2 <proper ty−prov ide r name=" deviceType ">

< ! [CDATA[
4 i f (window . sessionStorage) {

var type = window . sessionStorage . get I tem (’ ch . u n i f r . pa i . mice . deviceType ’) ;
6 i f (type != n u l l) {

r e t u r n type ;
8 }

}
10 var args = l o c a t i o n . search ;

var s t a r t = args . indexOf (" deviceType ") ;
12 i f (s t a r t >= 0) {

var value = args . subs t r i ng (s t a r t) ;
14 var begin = value . indexOf (" = ") + 1 ;

var end = value . indexOf (" & ") ;
16 i f (end == −1) {

end = value . leng th ;
18 }

r e t u r n value . subs t r i ng (begin , end) ;
20 }

var ua = window . nav iga to r . userAgent . toLowerCase () ;
22 i f (ua . indexOf (" andro id ") != −1) {

/ / F i r e f o x Mobile 6 does not respond c o r r e c t l y to the " ontouchevent " the re fo re , t h i s
i s a l i t t l e hack s ince not a l l andro id devices have to be touch devices − but
most o f them are

24 r e t u r n " touch " ;
}

26 i f (" on touchs ta r t " i n window . document . documentElement) {
r e t u r n " touch " ;

28 }
e lse {

30 r e t u r n " cursor " ;
}

32]] >
< / proper ty−prov ide r >

Listing 4.1: Definition of the property for distinction of implementations in deferred binding

browsers, Firefox, Internet Explorer, etc.).

This mechanism is accessible to us and has been reused for other device specific implementa-
tions (in addition to making the distinction of the web browser). Since any information which
is accessible by JavaScript (e.g. screen size, touch capability, etc.) can be used for the selec-
tion of the implementation for a specific interface, this mechanism is perfectly suited for our
needs. To give an impression of how such a device specific implementation selection works,
we present a concrete (but reduced in complexity) example which distinguishes between the
implementation of a mouse controller depending on the capabilities and specificities of a de-
vice. Listing 4.1 is an excerpt of a GWT module descriptor file. Here, line 1 declares the
property (“deviceType") that will be used to separate the devices depending on their touch
capability. Possible values of this property are “cursor” and “touch”. Lines 2 to 33 declare the
logic for how the value for this property can be examined by JavaScript. Lines 4 to 9 check if
the value for the property is stored in the HTML5 session storage, if available. If not, lines 10

4.1. General concepts 77

1 <replace−wi th
c lass=" ch . u n i f r . pa i . mice . gwt . mouseControl . c l i e n t . TouchPadCursorWidget ">

3 <when−type−i s c lass=" ch . u n i f r . pa i . mice . gwt . mouseControl . c l i e n t . TouchPadWidget " / >
< / replace−wi th>

5

<replace−wi th
7 c lass=" ch . u n i f r . pa i . mice . gwt . mouseControl . c l i e n t . TouchPadMobileWidget ">

<when−type−i s c lass=" ch . u n i f r . pa i . mice . gwt . mouseControl . c l i e n t . TouchPadWidget "
9 / >

<when−proper ty−i s name=" deviceType " value=" touch " / >
11 < / replace−wi th

Listing 4.2: Use of a property for the choice of a device specific implementation

to 20 check if the value can be found as a simple URL parameter of the web browser. That
way, a user can override the detection mechanism by simply adding “deviceType=touch” or
“deviceType=cursor” respectively to the requested URL. If the value is still not defined, lines
21 to 25 handle an issue for the mobile version of Firefox which does not respond correctly
to the “ontouchevent” and therefore, a work-around has been defined. Lines 26 to 31 then
check if the browser supports the “ontouchstart” event, which indicates whether the client
is running in a browser with touch capabilities or not. Depending on the outcome of this
check, the value “cursor” (for non-touch devices) or “touch” (for touch devices) respectively
is returned. Listing 4.2 – again part of a standard GWT module descriptor file – defines
in lines 1 to 4 that by default, the interface or class “TouchPadWidget” should be replaced
by the “TouchPadCursorWidget” which is a mouse control implementation suited for cursor
oriented devices (e.g. standard computers). Lines 6 to 10 on the other hand define that this
class shall be replaced with the implementation “TouchPadMobileWidget” if the property
“deviceType” (which we have defined above) equals the value “touch”.

The only requirement for having this replacement applied to the code and the implementa-
tion to be replaced based on the current mode is to instantiate the component with the fac-
tory method TouchPadWidget widget = GWT.create(TouchPadWidget.class) instead of the standard method
TouchPadWidget widget = new TouchPadWidget();. Due to the instantiation of the TouchPadWidget by
the factory method, the variable widget will either be an instance of “TouchPadCursorWidget”
or “TouchPadMobileWidget” – depending on the value of the property “deviceType”.

In addition to using the “deferred binding” mechanism for separating implementations of
whole modules, it is also possible to apply it for single widgets. Examples can be found in
section 4.3.4.

4.1. General concepts 78

Module configuration

As mentioned when discussing the general module concept, our toolkit takes care of the
technical requirements (the generation of code) to configure the different modules. Therefore,
the programming interfaces exist and can be accessed either by a supervisor (an external
module that collects information about the current situation and reconfigures the modules
accordingly) or by other components – such as generic user interfaces (cp. 4.2.4) which offer
configuration dialogs for every component or a general setting screen that allows the user to
reset the properties. Interfaces that react to configuration orders from another device in the
network would also be imaginable, which would allow to create external controlling instances.

(Self-)Adaptation for performance optimization

In addition to the adapting to input from the outside (through the configuration interface),
modules can adapt themselves as well. They for example can measure the time it takes until
they get the response from the server when they have sent out messages and adapt their
message update interval accordingly (e.g. if the latency is bigger than the message sending
interval, the interval can be decreased and therefore the network load reduced).

4.1.2 Coding conventions and concepts

Several coding conventions and concepts already exist due to our choice of technology – others
(such as the lifecycle management of the modules) still have to be established. This section
presents what already exists and what we have elaborated to create a well defined structure
for how applications should be built with our toolkit.

Reuse of APIs

The reuse of APIs is an essential but not always easily achievable goal. Very often, interfaces
exist for specific functionalities – such as drag-and-drop. When extending these functionali-
ties – e.g. to enable multi-user drag-and-drop – the developer (Alice) has the choice to either
define her own interfaces which have to be specially handled, or she can try to make her im-
plementation compatible with the already existing APIs. One of the benefits of reusing the
already existing APIs is that the developer of an end-user application (Bob) does not need
to know about Alice’s new drag-and-drop implementation for multi-cursors but only imple-
ments against the standard interface. The standard drag and drop implementation can then
be replaced by Alice’s new implementation for multi-cursor scenarios (e.g. by the “deferred
binding” mechanism – cp. 4.1.1) and Bob’s application will integrate this new functionality

4.1. General concepts 79

without changing any piece of code. Although Alice’s extension now runs well with the stan-
dard toolkit, the existing API might be too restricted (e.g. does not allow Bob to choose
the conflict handling strategy if two users want to drag the same object). Therefore, Alice
can choose a standard strategy to be applied when her implementation is accessed through
the standard API and create another specific interface for her implementation which can be
controlled in much more detail if necessary. That way, Bob has the choice to just use the
standard functionality (through the standard API) or to make use of the special functional-
ities that Alice’s implementation provides.

This concept of being compatible with already existing APIs helps developers get in touch
with the toolkit very quickly and – in the best case – they are completely unaware that their
application will be executed in a multi-user context at some point in the future.

Reuse of standard events

The reuse of API’s also means relying on standard events and extending them with the
needed functionality. Alice’s implementation could introduce her own new multi-pointer
mouse events for the drag and drop functionality which would have to be handled specifically
– a better way is to reuse the standard mouse events and to simply extend them with the
additional information needed which is easily achieved with JavaScript due to its weak typing
nature.

In our example, Alice can extend a standard mouse event with information about the device
from which it originated (e.g. by adding a device id) to be able to separate events based
on the input device that triggers them. A mouse event triggered by the native (directly
attached) mouse will not contain the additional information in the event (it will return a
“NULL” device id). Due to the special value of the device identifier, it is up to the developer
to decide if the event should be treatened the same way as a remote pointer or handled
separately by explicitly treating it in the event handling logic.

Reduction of differences between single- and multi-user software development

As a result, the reuse (and extension) of standard events ensures backwards compatibility to
the standard (single-pointer) scenario. Because the native mouse behaves exactly the same
way as any remote pointer would, it is possible to use the development tools of the existing
IDEs to develop the application (in the case of GWT e.g. the “development mode” which
allows to execute and debug Java code in the browser without the need of recompilation).
The development process therefore stays the same as it would be for a traditional single-user
application.

Additionally, chances are good that legacy applications (developed for single-user scenarios)
can be migrated (and therefore extended) with minimal or no effort to other scenarios (such

4.1. General concepts 80

as multi-user support). Since Alice’s multi-pointer implementation triggers standard mouse
events, legacy applications which have been created for single-pointer scenarios have regis-
tered handlers for the same type of events and therefore are executed properly independent
of the actual pointer which triggers the event. The non-consideration of the additional device
information in the event handling of legacy applications is usually only an issue for complex
actions (actions such as drag and drop or gesture recognition may not function correctly) but
not for standard behaviors (e.g. mouse down, mouse up, click, etc.).

As shown, the reuse of APIs and concepts of the underlying technology is an essential part
of achieving the reduction of complexity for the development of the multi-user scenario, as
well as an important step towards a development environment which lets the difference be-
tween the development of single- and multi-user scenarios disappear, as has been promoted
by Roseman and Greenberg [65].

(Automatic) distinction between implementations

Now that Alice has implemented a new library for multi-cursor drag and drop which is com-
patible with the standard interfaces, it is still up to Bob to decide if his application should
run in multi-pointer or single-pointer mode and therefore which drag and drop implementa-
tion to choose. Since Bob is used to implementing web applications for single-user scenarios,
he decides to go ahead and implement the single-cursor functionality first. How can Bob’s
single-user code now easily be transferred to the multi-cursor scenario? The answer lies in the
functionality of “deferred binding” – the possibility to replace implementations automatically
based on program logic. Bob therefore registers standard handlers for the drag and drop
functionality as he is used to doing when developing standard single-user applications and
does not care about the actual implementation that realizes the drag and drop functionality.
Since Alice has defined a property that tells the application if it is running in multi-pointer
or single-pointer mode, and which is used to replace the implementation of the drag and drop
functionality automatically, the switch between single- and multi-user mode can be achieved
at runtime by setting this specific property (e.g. by definition of a URL parameter, a button
inside of the application, etc.).

Hidden complexity

Extended functionalities and complex structures should be hidden in the toolkit as much as
possible. In addition to the use of simple interfaces, Java has the concept of annotations
which can help indicate special behaviors or specificities of classes, methods and fields. With
this functionality, information about how a specific class should be treated by the system can
be defined in an easily readable way without cluttering the code with complex instructions or

4.2. Basic functionalities 81

<!−− Hel loWorld . u i . xml −−>
2 < u i : UiBinder xmlns : u i = ’ urn : u i : com. google . gwt . u ib inder ’ >

<d iv >
4 Hel lo , .

< / d i v >
6 < / u i : UiBinder>

Listing 4.3: Declarative widget description in GWT

public class Hel loWorld {
2 in ter face MyUiBinder extends UiBinder <DivElement , Hel loWorld > { }

private s t a t i c MyUiBinder u iB inder = GWT. create (MyUiBinder . class) ;
4

@UiField SpanElement nameSpan ;
6

public Hel loWorld () {
8 setElement (u iB inder . createAndBindUi (th is)) ;

}
10

public void setName (S t r i n g name) { nameSpan . se t InnerTex t (name) ; }
12

public void Element getElement () { return nameSpan ; }
14 }

Listing 4.4: Binding of the declarative widget description by annotation in GWT

defining of too many interface implementations of a specific class. This concept is – originat-
ing from the Java language specification – again a reuse of the GWT standard functionality.
The GWT uses annotation based concepts (e.g. in their UIBinding-mechanism) that allow
to declare the structure of a graphical widget in a descriptive way (cp. Listing 4.3 from [103])
and to bind elements to Java fields through annotations (cp. Listing 4.4 – line 5, from [103])
in order to be able to access and manipulate them through code. The information defined
in classes, methods or fields can be used to generate code based on reflection at compile
time during the “deferred binding” phase of the GWT compiler – therefore, complex code
mechanisms can be hidden and added at compile time. This helps to simplify and increase
readability of the code. Potential uses might be the declaration of the distribution strategies
of a specific module (e.g. if a module shall be present on specific device types only), the
definition of fields which should be configurable by the user, etc.

4.2 Basic functionalities

In addition to these general concepts of how to structure the different components and how
to let them react to differences between executing devices, several basic functionalities which
are needed for all types of collaborative work have been elaborated.

4.2. Basic functionalities 82

4.2.1 Distributed eventing mechanism

Something that does not exist yet in GWT – since GWT focuses on standard web applications
and not necessarily on real-time applications – is a distributed eventing mechanism. To
establish such a distributed event mechanism, several issues have to be handled. In addition
to establishing a bi-directional communication channel, clock synchronization and different
strategies to handle ordering conflicts, how to integrate a distributed eventing mechanism
into the toolkit in a simple and API compatible way will be discussed.

Bi-directional communication channels

As mentioned before, one of the main disadvantages of web technologies is the lack of proper
bi-directional communication between server and client. But, when working with events
which need to be exchanged between different devices with minimal latency, bi-directional
communication is an absolute necessity.

Besides the recently appearing web sockets, fallback solutions for legacy browsers and web
servers exist (“Comet”). Since the different ways of working around the unidirectional re-
striction of network communication are more or less powerful, a clear hierarchy of preferred
solutions exists. Therefore, our toolkit needs to determine the most optimal mechanism for
bi-directional communication supported by both the client and the server. Other projects
have addressed exactly this issue. They let the client and the server negotiate about the
concrete technology that should be used and provide the bi-directional functionality through
more abstract interfaces valid for all possible implementations. Although multiple such third-
party libraries exist, we have chosen the “atmosphere” [95] library due to its already available
interfaces for GWT as well as its use in several larger projects. As with everything in our
toolkit, the bi-directional communication mechanism is integrated as a single module and
can easily be replaced if another (better) framework is used to establish the connection.

Clock synchronization

Clock synchronization can become a rather complex topic – since we are working with po-
tentially very low performance devices, a very light weight although not perfectly precise
concept was an appropriate solution in this case. To make sure that events are executed in
order, our system lets the application on the client (running in the web browser) guess the
current system time of its direct server. This is achieved by sending a request to a method
of the server that returns its current system time. The network latency of the request is
measured and the server time is adapted by adding half of the request duration. Despite up-
and down-streams between client and servers are seldomly symmetrical (meaning that the

4.2. Basic functionalities 83

request might not be transferred at the same speed as the response) and simplification by
ignoring the processing time of the request on the server, the concept of estimating half of the
time is also known in other contexts (e.g. in protocols such as NTP) and gives a rather good
estimation since variances are usually in regions of few milliseconds. With the information
of the current system time of the server, the offset between the server clock and the one of
the client can be calculated and when firing events, the timestamps of these events can be
adapted to the estimated server system time. This “synchronization” of the system clocks
has to be done regularly because the offset of the different system clocks might shift over
time.

Other strategies (such as the use of vector clocks) would be possible as well and could replace
our very light-weight approach. For our needs, the presented approach works sufficiently well
and can therefore be seen as one way to achieve message ordering on the client side.

Since it is possible that some devices have better guesses of the servers system time than
others, the events ordered by the timestamp are not guaranteed to represent the actual order
of the events that happened in the real world. Nevertheless, our synchronization strategy
mechanism allows all devices to interpret the same order and therefore lets them be consis-
tent with one another even if they are not consistent with the real world. Because variations
are mostly low values of milliseconds, users will not be able to identify the non-perfect clock-
synchronization and the user experience will not be affected.

If multiple servers are involved, the servers have to ensure the appropriate adaptation of the
time stamps when rerouting event messages, which can be achieved by standardized clock
synchronization protocols.

Functionality

The Google Web Toolkit contains a local eventing mechanism, the “event bus”, which is a
singleton instance and acts, as its name says, as an event bus that lets the different compo-
nents attach handlers for specific events and to fire events to notify other components about
changes.

This well established concept of an event bus – which is used in many other non-GWT tech-
nologies as well – has turned out to be quite easy to extend and is therefore very well suited
for our needs. We have extended the standard implementation of GWT (SimpleEventBus) with
remote event capabilities. If a component fires an event that extends our provided RemoteEvent

class, the event bus serializes the event, enriches it with information such as the originating
device and user, the estimated timestamp of the server (cp. clock synchronization), the re-
ceipients, etc. and sends it to the server. On the other hand, if an event is pushed by the
server to the event bus, the event is deserialized and fired in the local event bus controlled

4.2. Basic functionalities 84

by an exchangable conflict management strategy. That way, the sending and the receiving of
events through the network is fully transparent for the developer as long as such an event bus
is used to communicate between the different components (which is good practice in GWT
development anyways).

Additionally, to support the different strategies of conflict management, we have created three
new subtypes of remote events: BlockingRemoteEvent, UndoableRemoteEvent and DiscardingRemoteEvent.

The BlockingRemoteEvent is a very strict event – it blocks the execution of an event until it is
sure that no event will arrive and conflict with this event. The processing of this event might
be rather slow since the server push has to receive a notification from all of the other devices
first, so that they can confirm that they do not have any other potentially conflicting events
in their queue. These events should therefore be used very cautiously and only if they are
absolutely needed.

An UndoableRemoteEvent is an event which can be undone. It is executed immediately and there-
fore provides very fast responsiveness, but it might conflict with another event that arrives
later. Its handler (the UndoableRemoteEventHandler) requires – besides the onEvent method which
handles the arrival of an event – the methods undo as well as saveState. While saveState is ex-
ecuted before onEvent and therefore can be used as a hook which allows to save the current
state (e.g. of an object), the method undo is called when a conflict has appeared and the
operation which has been executed onEvent has to be undone. This way, the developers can
be guided to provide the necessary functionality for undoing events.

A DiscardingRemoteEvent is the most responsive and lightweight event. It is executed immediately
upon arrival and never rolled back. This is because of its nature, which implies that every
newer event fully replaces the former events. One example would be an event that repositions
an element. If a delayed event arrives, it does not have any effect on the application state
because the element has already been moved to the most current position and therefore the
delayed event can be ignored. Although the event history of the different devices might not
be the same (because the delayed events have been skipped), they still hold the same current
application state.

While every event could be sent as a BlockingRemoteEvent, performance would be very bad since
the event could only be executed once all devices involved have agreed by sending a confir-
mation message. UndoableRemoteEvents are only possible if all functionalities executed during
the event handling are under control and can be rolled back (e.g. those which do not affect
third party systems such as credit card transactions). DiscardingRemoteEvents are only suited for
very specific events, those which mainly provide constant updates of similar properties. It
is not possible to ensure that a specific event is ever processed by the receipients since it
could have been skipped because of the earlier arrival of a newer event. Additionally, the

4.2. Basic functionalities 85

DiscardingRemoteEvents could – although not affecting the application consistence – influence the
user experience because, for example, somebody has pointed with a remote pointer to a spe-
cific location on the screen which will not be visible because the repositioning of the pointer
has been skipped.

Other events with different handling strategies might easily be added (e.g. such as those
that support “operational transformation”) and therefore the eventing mechanism might be
customized for the specific needs of a module.

Use

Remote events can be defined just as standard custom GWTEvents as Listing 4.5 shows. The
declared variables (x, y and blocked) are serialized automatically by the toolkit. Just as the
SimpleEventBus of the GWT, the ServerPushEventBus of our toolkit can be instantiated either by
the standard constructor new ServerPushEventBus() or the deferred binding command GWT.create(

ServerPushEventBus.class). But, since the event bus should usually only be instanciated once per
application (singleton pattern), a convenience interface has been built and the event bus can
be accessed through the static method CommunicationManager.getBidirectionalEventBus().

Its use in the actual components is exactly the same as for the standard event bus (cp.Listing 4.6).

The different eventing strategies

As mentioned in the state of the art section (cp. 2.4), different strategies for handling con-
flicting events can be applied and vary in their suitability depending on the given application.
Our toolkit therefore provides the mentioned differentiation of event handling when working
with remote events and different strategies can now be injected into our distributed event
bus implementation. More optimistic strategies might result in a more regular execution of
the undo functionality of an event, while more pessimistic strategies delay the execution (the
firing to the local event bus) of the events. This way, the event handling and the complexity
of conflict handling is configurable by the developer and can therefore be adapted to the
special needs of the current application. More complex implementations would even allow to
differentiate the strategies to be applied depending on the actual application specific types
of events, which allows a very fine-grained control.

4.2.2 Security

Besides the simple distribution of events and messages, the event bus also includes functional-
ities for securing the data transfer – every client owns a private and a public key. Additionally,

4.2. Basic functionalities 86

public abstract class SomeRemoteEvent extends
2 UndoableRemoteEvent<SomeRemoteEventHandler >{

4 public s t a t i c f i n a l Type<SomeRemoteEventHandler> TYPE = new Type<SomeRemoteEventHandler
> () ;

6 public s t a t i c inter face SomeRemoteEventHandler extends UndoableRemoteEventHandler<
SomeRemoteEvent>{

}
8

public I n t ege r x ;
10 public I n t ege r y ;

public Boolean blocked ;
12 }

Listing 4.5: A custom remote event

SomeRemoteEvent event = GWT. create (SomeRemoteEvent . class) ;
2 CommunicationManager . ge tB id i rec t i ona lEven tBus () . f i r e E v e n t (event) ;

4 CommunicationManager . ge tB id i rec t i ona lEven tBus () . addHandler (SomeRemoteEvent .TYPE,
new SomeRemoteEvent . SomeRemoteEventHandler () {

6

@Override
8 public void onEvent (SomeRemoteEvent event) {

. . .
10 }

12 @Override
public void undo (SomeRemoteEvent event) {

14 . . .
}

16

@Override
18 public void saveState (SomeRemoteEvent event) {

. . .
20 }

}) ;

Listing 4.6: Creation of a remote event and firing through the event bus

4.2. Basic functionalities 87

shared keys for group communication can exist. The server push implementation processes
the message before sending it out and encrypts the message content (but not the header so
that servers – even if they are not allowed to decrypt the message are able to reroute it to
the right receipients). It is also possible to sign the message, to ensure that it is sent by the
actual client. That way, encryption, decryption as well as signature checking can be handled
within the event bus mechanism and are therefore transparent to the user.

4.2.3 Device grouping

If a user owns multiple devices and wants to interact with all of them in the same collabo-
rative session, the system has to be able to merge these devices to a single “meta-device” so
that the messages – independent of the device – all originate from the same virtual instance.
To achieve such a device grouping, the private credentials have to be shared between the two
devices. An initial device has to be selected (the one that appears first in the system) which
then creates all its credentials as well as its UUID. As soon as the second device appears,
it has to be paired with the first device. Therefore, the device sends a pairing request to
the initial device. Some control mechanisms can be established (e.g. a password has to be
entered – just as in the bluetooth pairing process) for ensuring that the device that wants
to be paired is known by the user. The pairing request is then accepted on the initial device
and the UUID as well as the private and public key are transferred to the second device.

The second device now uses the same credentials as the first one and is therefore indistin-
guishable from it for other devices in the same collaborative session. If the paired devices
are unpaired, both of the devices have to create new credentials and therefore to reconnect
as if they were new clients in the session.

4.2.4 Layouting

The layouting of an application is very important. Modules can be distributed and replicated
dynamically on different devices, and they can have different dimensions and different ways
of representing visual elements. Therefore, a way has to be found, to adapt the layouting
engine which takes care of the representation of the different modules depending on the dif-
ferent components.

Since the way in which visual elements can be represented is very device specific, the layout-
ing module is again device dependent and therefore provides different implementations for
different devices. Thus far, we have separated mobile and standard devices so smart phones
and tablets have different representations than notebooks or standard personal computers.
Further distinctions are well imaginable and part of future work.

4.2. Basic functionalities 88

Standard layout

The standard layout for (mainly) cursor oriented devices was inspired by the concept of the
graphical user interface of the Eclipse integrated development environment (IDE). Eclipse is
based on a plugin structure comparable to the module concept of our toolkit and therefore has
to solve the same issues of how to arrange the graphical output of its different components.
We have therefore built a layout structure that looks rather similar to the one of Eclipse,
including its main functionalities (cp. Figure 4.1). Every instance of a component is

Figure 4.1.: The IDE Eclipse (left) as a template for the design of the dynamic layout for
big screen and cursor oriented devices (right).

represented as a tab which can be rearranged by drag and drop. When an element is dragged
to a border, a new visual area will be created. The dimensions of the different visible areas
are manipulatable by drag and drop as well and therefore, the screen can freely be designed
by grouping common elements and splitting the screen into useful sections.

Mobile layout

A screen of a smart phone or a tablet is usually not big enough to display multiple components
side-by-side and therefore the standard layout is usually not appropriate for mobile devices.
Inspired by other mobile applications (such as Facebook, Google+, etc.) which have to
integrate multiple components into the mobile versions of their applications as well, a design
pattern can be extracted which seems to be the current state of the art of mobile user interface
design (cp. Figure 4.2). The web application shows a menu button at the top left corner of
the screen and presents a single active page in the main area of the screen. When pressing on
the menu button, a list of available components appears and lets the user to switch between

4.2. Basic functionalities 89

the different elements. The idea behind this reuse of well established concepts of layouting
is to provide a familiar interface to the user and therefore to establish consistency through
out applications.

Figure 4.2.: The mobile layout of Google+ (left) and the TWICE toolkit’s dynamic layout
(right): The menu button (A) is positioned on the top left and when pressed,
the menu bar (B) appears from the left.

Other layouts

In addition to the separation between big screen cursor-oriented and mobile touch based
devices, there are other things which need to be taken into account. It could, for example,
make sense to allow restricted split screens for tablets (e.g. two components side-by-side) or
to make use of the multiple screens of devices such as the Nintendo DS (and in that case
maybe even go further by supporting the 3D functionality of the upper screen) – but the
separation between the two main types of devices works for most devices and can be seen as
a proof of concept of how different layouts can be established depending on different device
specificities.

Automatization of component distribution

Now that we have found ways to represent components appropriately depending on the ex-
ecuting device, the question of how the different components are actually distributed arises.
For the moment, we focused on manual distribution (by letting the user select the compo-
nent(s) to be executed) but all the necessary technology is available for automatic distribution

4.2. Basic functionalities 90

as well. We have the flexible layouting system and the bidirectional communication channels
since there are no technical restrictions to prevent an automatic distribution of components.

4.2.5 Multi-user support

For synchronous collaboration, a common use case is the manipulation of elements on a
shared screen. Unfortunately the standard graphical toolkits – and therefore web browsers
– do not support multiple input devices (e.g. multiple cursors, multiple foci for text input)
and since web technologies do not have access to native device information, it makes access
to the extended information even harder. We therefore explored different ways of bringing
this extra information to the web application. Although our focus was set on multiple mouse
pointers as well as on text input, the presented approaches are suitable for other additional
information as well.

Besides establishing technical means to overcome the restrictions of a lack of multi-input
device support, we also thought about the scalability issues of such a solution (e.g. if too
many users want to access the same shared screen) and present our ideas of how to overcome
these issues.

Getting the extended cursor information

To be able to get extra information about the originating device of, for example, a pointer
movement or click, we needed to somehow integrate this additional information into the event
flow of the web browser and make it accessible to the web application for further actions. We
tested different possibilities and will now show the results, the benefits and the disadvantages
of the presented solutions.

First solution: MPX based Webkit browser

Our first solution was based on the functionality of MPX by Peter Hutterer [37] which was
integrated into the X.Org [125] stack and was recently supported by the GTK+ graphical
toolkit [100]. We chose to fork the standard webkit library, migrate it to the (at that time)
beta version of GTK+-3.0 (including the integration of the basic MPX support) and to
pass the additional information down to the actual mouse event which is sent to the web
page. Thanks to the dynamicity of JavaScript the additional information of the originating
device identifier was added as a non-standard field of the event itself. Thus, we were able to
distinguish between the cursors on the JavaScript level and were able to write libraries which
were taking this extra information into account (cp. 4.3.1). In addition to the extension of the
web browser, we developed a little daemon that listened for the attachment and detachement
of pointing devices and integrated them dynamically. This solution turned out to be rather

4.2. Basic functionalities 91

reliable and – despite working with beta versions – was quite stable. Additionally, all of
the devices which are supported by the operating system are immediately supported with
this system (e.g. wii-motes, joysticks, etc.). We then developed a RESTful interface which
allowed to control mouse cursors through the network. Because of the platform dependency
(it only works on Linux) of this solution and the need to install our customized web browser
and therefore break the true “walk-up and use” scenario, we have tried to find other ways in
which web browsers could be extended.

Additionally, the customized browser involved the issue of maintenance. Since today web
browsers have to be updated very regularly (mainly due to security issues), the task of
keeping our extended browser up to date would have required a significant effort.

Second solution: Browser plugin

Therefore, we decided to write a web browser plugin which triggered events by the use of
the standard system pointer to the currently executed web page instead. Since the plugin
was not directly accessing the native device control of the operating system and we wanted
to eliminate the platform-dependency that we had introduced with our dependency on the
MPX stack before, we focused on the network-controlled mouse cursors only. Our controller
with a RESTful interface was therefore redirecting the commands to the plugin which was
then visualizing the mouse pointer as well as firing the events in the web browser. Although
this solution now worked in a standard web browser (in our case Firefox) and the task of
maintaining the browser itself was released, the solution still was not exactly what we wanted
it to be because of its requirement of a plugin-installation.

Third solution: External information mapping

Our next idea was to map the event with the extra information in an indirect way. Instead
of letting the plugin fire the events, a controller with the network interface recorded the
incoming events as well as the timestamp, and then repositioned the standard system pointer
on the web browser. Since this movement registered by the JavaScript listener of the web
application, the web application then asked the controller through another REST-interface
for the meta information of the device based on the event properties (in the case of the
mouse pointers, the absolute X- and Y-coordinates as well as the timestamp). As long as the
controller was installed on the same machine as the web browser, the same system clock was
used and since the request speed through the local network interface was fast enough, we
achieved a rather good performance and accuracy of the event mappings. The “same origin
policy” – which appears if the browser is not running on the same machine as the server
of the actual web application – was overcome through the use of JSON-P (cp. [109]). We
therefore had a system which only required the availability of the additional component of a

4.2. Basic functionalities 92

controller that was able to provide a REST-interface and to control the mouse cursor. This
now allowed to use any web browser since no plugin was required with this solution anymore.
Nevertheless, the installation of the controller on the multi-pointer device was still not as
comfortable as it should have been (and did not fulfill the requirement of true “walk-up and
use”) – so the final idea was to use web sockets to send the actual mouse events directly to
the web browser without any intermediate layer.

Final solution: Web socket based event simulation

All the previous solutions had made use of actual native cursor events triggered from a
pointing device managed by the operating system. This newest solution on the other hand
does not even know the operating system and is therefore completely independent from the
platform. Thanks to the chosen technology, it is possible to simulate original events and
trigger them through code. This means that mouse events can be sent (although several
browser specific issues have to be overcome) all by code without the need of a native mouse
event at all. Thanks to this, we were able to overcome the previously needed additional
controller which means that we are able to simulate multiple pointers on any modern web
browser with web socket support without the need for any installation on that device. In
addition to the establishment of a true “walk up and use” environment and even one that
incudes multi-pointer functionality, we were able to establish a privacy aware mechanism as
well. Since the remote mouse pointers do not exist for any other part or application of the
device than the actual dedicated shared web application, pointers can never access any object
outside of the current browser window. Users can therefore easily provide their devices as
shared resources without having to worry about whether remote users will be able to access
something other than the actual shared web application. A functionality like this would have
been very hard to achieve with any of the other solutions mentioned before.

Expiring pointers

Now that remote pointers are available in the web browser and can be handled by JavaScript,
the question arises of how to manage the usability aspects of multiple mouse pointers inter-
acting with the same resource simultaneously. In a related experiment [46] and [68] executed
with our system, it was shown that there is a maximum of 6 pointers which can be visible on a
single screen before affecting the performance of the involved users for standard tasks. Since
our system allows much more than 6 collaborators to interact at the same time, solutions
had to be found that would take this result into account. We therefore decided for a strategy
of expiring pointers. Although the number of simultaneous pointers is restricted to 6, these
pointers can dynamically be assigned to different users. If Alice does not use her pointer
for a specific amount of time, the assignment of the specific pointer to Alice is released and

4.2. Basic functionalities 93

Bob can request for it. That way, the number of simultaneous interacting users through
remote pointers is restricted, but not the number of users in general who can interact with
the system.

Although this default restriction is based on the results of the mentioned experiment, the
number of pointers is parametrizable, meaning that it can be adapted even at runtime (cp.
5.4).

4.2.6 Easy access

We have seen the main advantages of web technologies for collaborative work, but one thing
which is still hard to achieve is to guide users to connect to the correct network and the correct
URL to participate in a collaborative session. In the worst case, the users have to log into
the defined network by hand and fill in the address bar of their web browsers by typing the
sometimes very technical access URLs (especially in local area networks). Although still valid
as a fallback solution if no simplification of access can be applied, the acess to a collaborative
session should be supported by additional technical means. Some of the possible technologies
that exist and that have been taken into account for our toolkit will therefore be presented
in the following subsections.

QR tags

QR tags are visual tags (cp. Figure 4.1 at the bottom right for an example) which contain
information that can be interpreted by specialized software. Many users of smart phones or
tablets have such an interpreter installed (e.g. Google Goggles) and therefore only have to
take a picture of the specific QR tag and the software will take the corresponding actions.
QR standards exist, for example, for accessing WLANs or letting the device be redirected
to a specific web page. To support this way of directing the user to the correct page, the
toolkit contains a standard component which is able to create QR codes dynamically and is
therefore able to present them, for example on a shared screen, so that arriving users can
connect their devices in a simple and comfortable way.

Bluetooth / E-Mail / Short text messages

Another possibility is to notify devices through bluetooth, email, SMS or similar. If a device
in the setting is already connected to the session, that device could send the URL by any of
the mentioned channels to a device that is not yet connected. That way, information about
the WLAN and access URL can be spread without the need to type in these parameters by
hand.

4.3. Software modules 94

Landing page of WiFi hotspot

Some WLAN routers allow to define a landing page to which a user is redirected when trying
to access a web page through the wireless LAN the first time (usually for authentication
purposes). We have succesfully tested this way of easy access with a Linksys WRT54GL
WLAN router running a DD-WRT firmware using the “NoCatSplash” functionality.

This configuration is very well suited if the server of a collaborative setting is well known and
accessible by a static IP address. Such conditions can be found mostly for static installations
(e.g. a meeting room) or if the WLAN router is part of a mobile set up belonging, for
example, to a notebook which has the role of a dedicated server (e.g. if a teacher brings
his notebook as well as the router to the classroom and lets students connect to the wireless
network).

Public directories

If a connection to a public network (e.g. the internet) exists, the information about the
session can be published in an online directory. The user then has to access the well-known
(and maybe even bookmarked) web page, can search for the collaborative session and then
be informed about the connection parameters.

4.3 Software modules

Besides the presented basic functionalities which are required for almost all collaborative
sessions, additional software modules have been developed for special purposes – mainly
influenced by the needs of our experiments. These functionalities are all available as modules
as well and can freely be applied to and integrated with any type of collaborative application.

4.3.1 Drag and drop

Drag and drop is a very well known paradigm to reposition, scale and associate visual objects
on a screen. Although HTML5 has started to standardize the use of drag and drop, there are
still issues – especially for less common interaction types like our multi-pointer implementa-
tion. We therefore have implemented our own drag and drop library supporting most types
of interaction modalities – single-pointer, multi-pointer as well as touch.

4.3. Software modules 95

public class DraggableLabel extends Label implements Draggable {
2 @Override

public boolean isDraggable () {
4 return true ;

}
6 }

Listing 4.7: An example of a draggable widget

Functionality

While single-pointer drag and drop is well supported in most browsers and implementations,
touch drag and drop has some issues with the distinction between a scrolling action (swiping
over the screen) and the actual drag.

While we have solved the issue with touch using a simple distinction of the gestures if a drag
gesture starts on a draggable object or not, the multi-pointer support needed more complex
management.

As shown in the section about the multi-user support, we were able to add information about
the originating device to a mouse event. This information had to be considered within our
library because otherwise, events of other pointers (the ones which were not in dragging
mode) would influence the drag of the object. For example, if pointer A starts a drag and
pointer B causes a “mouse move” event, a standard drag and drop library would reposition
the dragged element to the new position of pointer B. Our library on the other hand separates
the events depending on their source and therefore only applies events of pointer A to the
dragged element.

Use

When the drag and drop library module is included, the functionality can be used in the
following way: The widget to be dragged implements the interface ch. unifr .pai.mice.gwt.dragNDrop

.client. intf .Draggable (cp. Listing 4.7). The method isDraggable() allows to dynamically define at
runtime if the element is currently draggable or not (e.g. the value might become false if
the widget is locked by another user). The widget then can be made draggable by calling
the static method DragNDrop.makeDraggable taking the widget as an argument as well as optional
configurations (DragConfiguration) to be able to define how the widget should react when the
drag starts (onStartDrag), when it is dropped (onDrop) and after it is dropped (onEndOfDrop). If
we want to define another widget to react to drops and hovering widgets, we can define a
DropTargetHandler on any widget that implements the standard GWT HasMouseOverHandlers (which
is almost any widget available) and define what logic should be executed when an element

4.3. Software modules 96

is hovering (onHover and onHoverEnd) or dropped above this area (onDrop). Besides the dragged
widget and the identifier of the executing pointer, the percentage of the intersecting area of
the dragged widget with the drop target is given as a parameter. That way, the drop target
can react differently if an element is hovering in the area only partially or if it is intersecting
fully with the underlying area.

In addition to this basic functionality, many opportunities for detailed configuration exist
(e.g. if the widget will be visually moved itself or if a semi-transparent copy will be dragged
as a placeholder until the element is dropped, logic for rejecting the drag on a specific drop
target, etc.) – for more details see the API documentation in [123].

Future improvements

Since the standardization of the HTML5 drag and drop events was not very mature and not
fully included in GWT at the time of designing the API, the drag and drop module still has
its own interfaces which are not directly compatible with the standard APIs that are available
today. Nevertheless, an initial proof of concept refactoring has shown that it is possible to
transform the APIs of our implementation to support these newly defined standard interfaces.
With the new APIs, for example, the widget to be dragged would not have to implement a
specific interface (Draggable) anymore but could also just define its HTML attribute draggable

and be draggable by default. Although this does not allow as fine grained control as with
our specific interface, a default behaviour can be defined for such elements and therefore
compatibility to the default APIs can be guaranteed just as was defined in the Reuse of APIs
section in 4.1.2.

4.3.2 Remote mouse controller

For controlling the pointers on the shared screen, web based mouse controller clients have had
to be developed. Since the way in which the position as well as clicks, drags and drops can be
handled differs depending on the type of the executing device as well as its input modalities,
multiple implementations had to be realized to support as many devices as possible.

Functionality

The mouse control is achieved by sending coordinates and/or events such as mouse down,
mouse up and click by a simple HTTP request (cp. Figure 4.3). The event is then pushed
to the shared device through web socket server push (for the moment we have restricted the
functionality to web socket compatible web browsers for performance reasons). To achieve
a constant message rate, the client sends out the position information (if changed) in a

4.3. Software modules 97

configurable interval (80ms by default).

To make use of the different input modalities, we mainly distinguish between mouse and touch
oriented devices. For mouse oriented devices, position values of a mouse pointer within a
sensitive area are translated to the scale of the shared screen’s resolution. If a pointer
enters the sensitive area, the mouse events are captured and transmitted to the server. For
touch devices, the sensitive area records the touch gestures and calculates the position of the
mouse cursor based on the relative movement of the touch. This is then again translated
into absolute positions and transmitted to the server for rerouting to the shared screen. We
developed additional implementations based on scrolling (e.g. for electronic readers) and with
more special strategies that support very special conditions such as the one of the Nintendo
DS which has two screens but where only one of those screens is interactive and captures
events.

To be able to calculate the absolute position of the pointer in any of the implementations, the
resolution of the target screen has to be known. This is achieved by constant feedback about
the current screen size transmitted in the response of the update request. In addition to the
pixel size, the client device also gets information about the color that has been assigned to
its pointer so that that color can be presented as the background of the screen to make users
aware of which mouse pointer they are controlling.

Figure 4.3.: Control of the mouse cursor: A, B and C send the mouse control information
to a server which reroutes them to the shared device. Within the response, the
clients get information about the pixel size of the target screen and about the
color of the pointer which they are controlling

Use

The mouse control component is a simple toolkit module which can be integrated dynamically
into any application. To make a device multi-cursor enabled, the module has to be started in
the code by creating a MultiCursorController by deferred binding (GWT.create(MultiCursorController

.class)) and starting it by controller . start () . This component is already included in several other

4.3. Software modules 98

modules (e.g. in the layouting) and therefore usually does not have to be integrated into the
application explicitely.

4.3.3 Remote keyboard

The remote keyboard – similar to mouse control – allows users to input text on a remote
device. Again, different implementations have to be realized – mainly depending on if the
device contains a hardware keyboard or if the appearance of a keyboard can be triggered.

Functionality

For devices with a hardware keyboard, the realisation of the remote keyboard is rather simple:
The component listens to key presses, captures them and sends them to the server where
they are – again – pushed to the shared device.

For devices with software keyboards which are not on the screen by default, things are a
little harder. Since we do not have direct access to the native functionalities of the device
and we are therefore not able to request the software keyboard from the system, we have to
work-around it with a little trick. Because all devices trigger the keyboard when a textbox is
focused (since the user is expected to enter a text), we have styled a textbox (using CSS) to
look like a standard button that has to be pressed when the user wants to show the keyboard.
Once the text field is in focus, we can hide it by scaling it down and moving it outside of
the visible area. This gives the impression that we have a button to trigger the software
keyboard, even though this functionality is not in the scope of web applications. Since we
now have focus on a text field, it is enough to listen to the keyboard events arriving in that
text field and to send them – again as with the more simple implementation – to the server
for further distribution.

Use

Again, the keyboard is created as a module and can be integrated whenever needed into
a collaborative application. Additionally, the layout module for touch devices by default
contains the button that triggers the software keyboard. Although it is possible to integrate
the keyboard component as a standalone module, this special handling has been created
since the software keyboard does not have a graphical representation (except of the button)
and might be more useful in combination with other modules rather than as a standalone
functionality.

4.3. Software modules 99

4.3.4 Extended widgets for multi-user and multi-device contexts

The extension of existing standard HTML widgets (e.g. text boxes, check boxes, buttons,
etc.) for the multi-user and multi-device context is a challenge. Because all of these elements
are usually provided by the graphical libraries that the web browser is implemented with and
therefore do not contain functionalities for multi-user access, we have built work-arounds to
establish such functionality which will be presented in the following subsections using the
example of a multi-focus text box. Additionally, such widgets are only built to exist once
(because of the single-device paradigm) and therefore are not prepared to be duplicated across
distributed user interfaces. Therefore, we have developed a synchronization mechanism with
which a widget uses the communication module of our toolkit to notify its duplicate about
state changes.

Focus widgets

Focus widgets are widgets which gain the focus of the application when selected (e.g. by
a mouse click) and that accept input from a device. Standard widget toolkits usually only
allow a single widget to be focused at a time and only by a single input device. This helps
to significantly reduce complexity of device management and is fair enough for single-user
devices. But, since in our system multiple users can interact with the same device, we had
to find ways around this restriction.

Functionality

Since web browsers are standard applications, they use normal widget toolkits for their
implementations. This implies that the components provided by the web browser for the
representation of a web application (such as text boxes, etc.) are standard widgets as well and
therefore are only capable of single-focus. To overcome this issue, alternative implementations
have to be realized which do not directly use the widget’s standard components but rather
allow to handle the events (such as focus, blur, etc.) by themselves.

Although potentially possible with legacy HTML components (we have implemented a basic
proof of concept text box with multi-focus capabilities), the new features of HTML5 simplify
the development of such rather complex widgets a lot. We have therefore decided to focus
our main development on the new technologies and to re-build a multi-focus textbox based
on a canvas element, although this implies a slight restriction on the supported web browsers
(only HTML5 web browsers will be able to execute the “multi-user” functionality for the
moment) which are capable of executing these widgets.

4.3. Software modules 100

In addition to the canvas element, a hidden standard textbox is included which is used as the
“backend” of the events. Therefore, all the input information which is captured by our canvas
element is rerouted to the standard textbox in order to be backwards compatible with the
single-focus implementation and to make sure, that standard event handlers (for the reuse of
APIs) can be attached.

In Figure 4.4 the activity diagram of an example use case of the multi-focus implementation
is presented. Device A (the red cursor) clicks on the canvas. Based on the click position, the
canvas calculates at which position index of the text field the click has arrived and draws a
blinking text cursor at the specified position. The component registers the focus of device A
for our widget and a focus event is fired on the hidden textbox to which handlers might be
registered and which are informed about the focus of the specific element. If device A now
sends a keypress event (in our example, the letter “o” has been pressed), the focus registry
is aware of the current focused element of device A and redirects the event to the widget.
The widget itself adapts its value, shifts the text cursor to the right and redraws itself. After
that, it updates the value of the hidden text field to inform registered change-value handlers.
The same registration process is applied when device B (the blue cursor) clicks on the text
box. Since the text cursor position of device B is smaller than the cursor of device A, the
interpretation of the keypress (“l”) of device B affects the position of both text cursors and
therefore, both of them are shifted to the right by one position. Finally, device A causes a
click outside of the textbox which triggers a blur event on the canvas. The canvas removes
the text cursor from itself, unregisters the focus of device A and sends a blur event for the
hidden text box.

Use

The use of a multi-focus textbox is handled just like a normal GWT textbox – the only
difference is that the textbox should not be instantiated by the default constructor but
rather by the deferred binding command TextBox textbox = GWT.create(TextBox.class). Depending on
the mode of the device (multi-pointer mode or not), a standard textbox or the extended
multi-focus version is instantiated.

The example of the multi-focus textbox can also be seen as a show case of how our toolkit
tries to integrate extended functionalities into widgets in a very smooth and almost non-
noticeable way. It takes the default widget as the base, including its interfaces, and then
extends it with a default configuration for the additional functions. If a developer needs more
fine-grained control, it is still possible to cast the widget to the actual class and manipulate
it through extended APIs (e.g. ((MultiFocusTextBox)textbox).setMaxUsers(3);).

4.3. Software modules 101

Figure 4.4.: Activity diagram of a multi-focus textbox with two devices (A=red and B=blue)

Self synchronizing widgets

Self synchronizing – or “remote” – widgets are widgets which automatically synchronize their
content within the same working session through the event bus mechanism. One example
would be if two devices run the same application module which includes a self synchronizing
text box, the value of the text box will immediately be updated on device B if it has been
manipulated on device A.

4.3. Software modules 102

Functionality

As mentioned before, synchronized widgets rely on the general eventing mechanism provided
by the toolkit. The widgets (e.g. a text box) fire change events to the event bus and register
a handler for these types of events at the same time. After filtering out events that originated
in itself, the widget updates its value according to the received messages from other devices.

Use

Again, these kinds of widgets are special implementations of the standard widget and can
either be accessed through the deferred binding mechanism (e.g. GWT.create(TextBox.class)) or
explicitely by standard instantiation with the available constructor (e.g. new RemoteTextBox()).

4.3.5 Collaborative web browsing

A more advanced widget that we have developed is a collaborative web browsing frame. This
collaborative web browsing frame extends third party web pages (e.g. www.google.ch) with
multi-user (or other types of) functionalities. A detailed description of this module can be
found in [68]. Since these web pages are not under our control, we had to find ways to extend
the original pages in a legal and generalizable way.

Architecture

Our solution works with a forward proxy approach. The server contains a proxy servlet
through which clients can access external web pages. The url, which is requested by the
clients, is therefore adapted from e.g. http :// www.google.ch to http :// proxyserver/http :// www.google.ch.
The proxy server not only executes the requests on behalf of the client but can also adapt
the response before returning it to the client. This possibility of manipulating the response
allows us to inject JavaScript which extends the functionality of the original web page even
though we do not have that page under control, and we did not have to find ways to take
over control by other (mostly illegal and non-generalizable) means (e.g. cross-site scripting).

A forward proxy has several advantages compared to a reverse proxy1 such as the indepen-
dence from configuration and no requirements for predefined infrastructures. But, there are
some disadvantages as well. Since web pages usually contain hyperlinks which point to some
other addresses, the loss of control is a serious issue. If somebody clicks on a non-manipulated
link, the client will be navigated to the original page without the prefix of the proxy server in
the URL. As soon as a user navigates away from the proxy server, control of this page is lost

1A reverse proxy is transparent to the client: The client still accesses the original URL (e.g.
http://www.google.ch) but, due to a configurational setting or by the design of the infrastructure, the request
is passed through a proxy server as well.

4.4. Use of the toolkit in practice 103

and it cannot be regained automatically. Therefore, the proxy server has to make sure that
all URLs presented on a web page are manipulated and replaced by adding the proxy-prefix
to the target URL. But, since many web-pages these days use AJAX and links might be
created dynamically using JavaScript, it is not enough just to manipulate these URLs on
the server side while processing the response. We therefore have implemented a controlling
JavaScript which is injected into the response for the client and which listens for any changes
in the DOM structure. If a link is generated or manipulated by a third party JavaScript, our
logic makes sure that the URL is rewritten immediately.

Privacy and security

The forward proxy solution also implies some issues related to privacy and security. Since
the proxy server has the possibility to transform the response of the original page, it would
also be possible to misuse this kind of functionality. Therefore, users should be advised not
to execute security and privacy sensitive actions through the proxy server. Since we do not
expect privacy sensitive actions to be executed on a shared device anyway, and since our
solution allows to make use of shared and private browsing sessions simultaneously side-by-
side (e.g. one frame or tab of the browser accessing a web page through the proxy for the
shared scenario and one accessing the web page with its original URL and therefore in a
secure way for private use), we do not consider this restriction as a serious issue as long as
the user is made aware of the potential risk.

Use

The collaborative web browsing component is a standard module and can therefore be in-
cluded as an element into a collaborative application. The implementation shows how server
side resources can be used to extend information or external resources for collaborative use
and therefore shall be seen as a more complex example of a customized functionality exten-
sion.

4.4 Use of the toolkit in practice

When using the toolkit, a developer can access the different projects, which are organized
as Maven [110] packages. Depending on the developer’s needs, not all modules have to be
used and some can even be replaced. Nevertheless, there are several modules which form the
foundation of a standard collaborative application developed with our toolkit and therefore,
the standard way of developing a collaborative applications will be presented in this section.

4.4. Use of the toolkit in practice 104

<!DOCTYPE module PUBLIC " − //Google Inc . / / DTD Google Web T o o l k i t 2 . 4 . 0 / /EN" " h t t p : / / google−
web− t o o l k i t . googlecode . com/ svn / tags / 2 . 4 . 0 / d i s t r o−source / core / s rc / gwt−module . dtd ">

2 <module>
< i n h e r i t s name="com. google . gwt . user . User " / >

4 <source path=" c l i e n t " / >
< / module>

Listing 4.8: A GWT module descriptor for libraries

4.4.1 Module development

For the development of collaborative applications with the toolkit, two different types of
components exist: executable applications and libraries. The developer can freely choose
where to define the modules (cp. 4.1.1) and could either implement them in one single but
very large application project or split them up into multiple projects, providing the modules
as libraries. For the re-use of modules, we highly recommend the idea of splitting modules
up into separate projects to allow a modular integration of the different functionalities. Ob-
viously, closely related modules might be defined within a single development project – but
granularity should still be kept reasonably fine.

An application project differs from a library project mainly because the application actually
contains a graphical interface while the library does not. The different projects, as well as
their dependencies, are managed and organized by Maven. Although it is not absolutely
necessary, users of the toolkit are advised to continue to use Maven, especially because it is
a defacto standard of today’s Java development.

Writing a library

For writing libraries, experience has shown that it is good practice to create two separate
projects for the library. One GWT project without EntryPoint (cp. Listing 4.8), producing a
JAR file including the source code of the classes which will be translated into JavaScript (cp.
Listing B.1) and a “testing-application” with a dependency on the library and which imple-
ments test scenarios and/or show cases for the use of the library. This testing-application
serves not only as an example for other developers to see the functionalities, purposes and
uses of the library but also acts as a test bed for the actual development.

Writing an application

To write an actual application which can be deployed and executed is almost identical to
writing a standard GWT application. The project to create is a standard GWT project
(again using Maven for dependency resolution – cp. Listing B.2) which has dependencies

4.5. Comparison with standard GWT 105

on the different modules which are required for the application. Not mandatory, but recom-
mended, are the modules DynamicLayout (for the provision of the device specific layouts and
lifecycle management of the modules), ServerPush (the communication structure including
the distributed event bus and security mechanisms) and DragNDrop (the implementation of
multi-pointer and touch drag and drop – this module is already part of DynamicLayout).

The dependencies not only need to be defined in the Maven-POM file but in the GWT.xml-
descriptor file as well (as is usual in GWT).

When using the DynamicLayout, modules that will be shown as part of the application can be
added by calling the method public <W extends Widget> void addComponent(String name, Object component,

AsyncCallback<W> callback). Here, the name of the component can be defined (the label that is
used, for example, in the menu or as the header of the tab), the second argument is the
instantiated module (by deferred binding: e.g. GWT.create(TouchPadModule.class)) and the third is
a callback method which is invoked at the moment when the actual module is instantiated.

4.5 Comparison with standard GWT

In this section, we want to summarize the components that we added in our toolkit to stan-
dard GWT, and therefore give an overview of the extensions available to the developer.

Extended concepts of GWT
Concept Descripton
Modules Extension of the standard GWT module concept of simple code separation to support

life cycle management of the different components which can be combined into a full
application (cp. 4.1.1).

Reuse of APIs Enforcement of the good practice to reuse standard APIs as well as standard events
while extending them to the additional needs (cp. 4.1.2).

Deferred binding Extension of the standard use of deferred binding (the separation of different web
browser implementations) by the introduction of separation logic based on input modal-
ities and other device specificities (cp. 4.1.1).

Hiding complexity Extension of the use of annotations to hide the complexity of configurable module
parameters (cp. 4.1.2).

4.6. Discussion 106

Newly introduced components and concepts by TWICE
Component Descripton
Device grouping The technical possibility to group devices and let them appear as one device for multi-

device per user use (cp. 4.2.3)
Layouting and component dis-
tribution

Different dynamic layout implementations depending on the screen size as well as the
input modalities of a device (cp. 4.2.4)

Multi pointer support A solution to integrate multiple pointers on a shared device based on pure web tech-
nologies triggering standard mouse events (cp. 4.2.5).

Easy access Tools to simplify the actions for an end-user to connect to an already existing collabo-
rative setting (cp. 4.2.6).

Remote controllers Remote control widgets for mouse pointers as well as for the insertion of text. Different
input modalities are handled through different specific implementations (e.g. “touch-
pad” for touch devices, pointer position translation for cursor-oriented devices) – cp.
4.3.2 and 4.3.3.

Collaborative web browsing A component that allows – based on a forward proxy mechanism – to extend legacy and
third-party web pages and web applications with multi-user functionalities (cp. 4.3.5).

Extended components of GWT
GWT TWICE Description GWT use TWICE use
EventBus ServerPushEventBus Extension of the standard

event bus for remote commu-
nication functionalities (incl.
the introduction of remote
events, security, clock synchro-
nization and conflict manage-
ment strategies) – cp. 4.2.1.

new
SimpleEventBus()

new
ServerPushEventBus()
or GWT.create
(EventBus.class)

HasDragEndHandlers

HasDragEnterHandlers

HasDragHandlers

HasDragLeaveHandlers

HasDragOverHandlers

HasDragStartHandlers

HasDropHandlers

DragNDrop

DragNDropHandler

DropTargetHandler

Multi-pointer aware drag and
drop library (not yet standard
API compatible – cp. 4.3.1).

addDropHandler

setDraggable

. . .

DragNDrop.
setDropHandler

DragNDrop.
makeDraggable

. . .

TextBox MultiFocusTextBox Textbox with multi-focus ca-
pabilities (based on the can-
vas element and therefore only
works with HTML5 browsers –
cp. 4.3.4).

new TextBox()
or GWT.create
(TextBox.class)

new
MultiFocusTextBox()
or GWT.create
(TextBox.class)

TextBox RemoteTextBox Textbox with self-
synchronizing capabilities
– cp. 4.3.4).

new TextBox()
or GWT.create
(TextBox.class)

new
RemoteTextBox() or
GWT.create
(TextBox.class)

4.6 Discussion

The main requirements defined in 3.2 have all been addressed with our toolkit – the provi-
sion of simple APIs and the reuse of concepts, the modularity as well as the extensibility of
the toolkit components, lazy code loading to save resources, device-specific code adaptation

4.6. Discussion 107

by design, the establishment of bi-directional communication channels including tools for
network-traffic optimization that can be used for messaging and remote eventing mechanism,
the establishment of application level security, components for multi-user support, the group-
ing of devices for handling multi-devices per user scenarios as well as the distribution of user
interfaces to the different devices. Some of the realizations and implementations are more
advanced (e.g. the dynamic layouting, the multi-user support) than others (e.g. messaging
and eventing), mostly due to the manifold approaches of how a single issue of collaborative
applications can be addressed.

Nevertheless, we were able to show how all of the mentioned requirements can be addressed
and therefore how a solid and extensible toolkit (TWICE) can be built which is able to hide
the complexity of distributed and multi-user oriented collaborative applications, especially
by the reuse of programming interfaces and the functionality of dynamic replacement of par-
tial implementations (modules). Even though our toolkit hides the complexity as much as
possible and tries to help developers of single-user applications feel comfortable using it, the
detailed control of special (e.g. device specific) functionalities is not hidden. Extended APIs
for more detailed control are accessible to developers, allowing them to develop more complex
applications when needed.

5
Evaluation and real world use

5.1. Technical evaluation . 109

5.1.1. Performance . 109

5.1.2. Heterogeneity . 114

5.1.3. Scalability . 115

5.2. In-use evaluation . 116

5.2.1. Initial experiments . 116

5.2.2. A Fitt of distraction . 118

5.2.3. Distributed user interface experiments 119

5.2.4. Computer supported brain storming 121

5.2.5. Usability experiments . 122

5.2.6. Multi-Zoom . 123

5.3. A modular mindmap application 124

5.3.1. The latest version of the mindmap application 125

5.3.2. Non-integrated components . 127

5.3.3. Modularity in practice . 128

5.4. Real-world experiment: Use in an educational scenario 128

5.5. Developer evaluation of the toolkit 133

5.6. Discussion . 136

To confirm that the TWICE toolkit’s defined requirements have been fulfilled and that the
architecture as well as the choice of technology and concepts are valid, we have performed
different types of evaluations. In addition to the technical evaluations which show the tech-
nical viability of the application development with the toolkit, the toolkit has been used to
develop multiple real scenarios and applications proving its effectiveness and reliability. By

108

5.1. Technical evaluation 109

observing and interviewing other developers we have tried to evaluate the additional com-
plexity introduced by our toolkit compared to the development of single-user standard web
applications using the Google Web Toolkit. Additionally, a more complex show case appli-
cation is presented which shows how the different components are integrated with each other
and how they interact. To ensure that applications developed with our toolkit can also work
in real word scenarios, we have applied our show case application in an educational setting
to validate end-user acceptance of the system.

5.1 Technical evaluation

The technical evaluation of the system is based on experimental testing of different aspects of
the system. We want to show that the chosen technology is capable of providing the required
functionalities and fulfills the main requirements defined in section 3.2.

5.1.1 Performance

The performance of the system depends on multiple factors. The most important ones are:
network latency, performance of the JavaScript engine and device capabilities.

Network latency

Gutwin et al. show in [30] that usual message rates used for collaborative applications can
be handled even by “legacy” network connections (XHR by HTTP POST), especially in local
area networks, while the new web socket concept outperforms even plug-in based approaches.
For communication from the browser to the server, they used messages with 500 byte pay-
loads (without header overhead) and achieved more than 1000 delivered messages per second
with the slowest technology in LAN conditions and 19 delivered messages per second through
a wide area network (WAN). One of the most frequently updating components in our toolkit
is the remote mouse controller which checks for position changes every 80 milliseconds by
default and therefore sends a maximum of 12.5 messages per second. The payload of such
mouse position updates is 16 bytes and therefore far below the payload used in the tests of
Gutwin et al.

For message rates in the other direction (from the server to the web browser), the mes-
sage throughput per second depends on the available technology. While most of the tested
technologies in [30] achieve a transfer of more than 300 messages per second even in WAN
conditions, the long polling technology drops to 20 messages per second over a WAN. Since
in a collaborative, distributed system more messages usually arrive at a device than the de-

5.1. Technical evaluation 110

vice broadcasts (because there is a theoretically infinite number of senders), this could be a
serious restriction and therefore devices which only support long polling should not execute
components which consume a large amount of events, but rather should mainly be used as
data providers with mostly outgoing data transfer.

Additionally, if performance drops – e.g. because of a general overload on the network, poor
performance of the JavaScript engine or capabilities that are lacking in the device – a dy-
namic adaptation of message update rates is possible. Our research group has already started
projects to provide means for an add-on to the toolkit’s message system which adapts itself
depending on the devices as well as the network conditions, and therefore helps to reduce the
overall load for the system.

To conclude, we have seen that all network technologies tested by Gutwin et al. perform
well enough to support good network throughput in local area networks and most of them
are even applicable for metropolitan area networks (MANs) and WANs. Since our system
mainly focuses on colocated scenarios, the use in LANs is the most common use case and
we therefore do not expect to face serious network issues. If the system is applied to remote
scenarios on the other hand, messaging would need to be reconsidered and more static struc-
tures could be introduced (e.g. one server at each location acting as routers and using more
performant network protocols).

Network throughput on a shared WLAN

Another restriction is the available bandwidth. If, for example, all colocated clients are in-
terconnected through the same wireless network, they share the provided bandwidth which
might vary a lot depending on the characteristics of the physical environment. Nevertheless,
the messages exchanged in collaborative environments are usually rather small in size (except
for audio and video) and therefore do not consume a lot of bandwidth. Our example of the
remote mouse controller shows that a message with 16 bytes of payload ends up as 119 bytes
in total (including message overhead and response). At a maximum transfer of 12.5 messages
per second, this results in about 1.5 kilobytes (or 12 kilobit/s) of data transfer per second
and client.

In [19], average throughput for TCP of a standard wireless LAN has been found to be (de-
pending on the encryption standard) above 13Mbps (or 1664 KB/s). In such a scenario, with
the theoretical assumption that no other data transfer is processed at that time, more than
1000 client devices would be able to control the mouse cursors at the same time. Although
the scenario of having a network load of only the remote cursors is rather unrealistic and
the actual transfer rates vary depending on many different factors, we can conclude that (for
standard text messages) the provided bandwidth of a standard wireless network should be

5.1. Technical evaluation 111

fast enough in most realistic scenarios.

To get an idea of the system performance in a real use case, an evaluation was performed
with a school class of 13 students and one teacher (cp. 5.4) which showed that even with
a single standard low-cost wireless LAN router, a system can be built that performs well
enough for realistic simultaneous use.

Performance of JavaScript engines and device capabilities

Because our toolkit is mainly based on the execution of code on the client side, the execution
performance of our system relies mainly – in addition to the network performance – on the
capabilities of JavaScript. This JavaScript performance depends on the actual implementa-
tion of the web browser as well as on the capabilities of the device (processor speed, RAM,
etc.) that the browser is running on. Because of this device-dependence, general statements
about the performance of the overall system are very hard to make and should be differen-
tiated depending on the devices involved. Additionally, web browser implementations have
different focii (e.g. string operations, encryption, bit operations, regular expressions, etc.)
and therefore measurement and comparison of such performance values is even more difficult.

One of the most widely accepted tools to compare the overall performance of web browsers
and their JavaScript engine is the SunSpider JavaScript Benchmark (cp. [121]) which bal-
ances the different functionalities of the JavaScript engines and reruns the tests multiple
times to provide information about variances during the run of the benchmark (due to other
background processes running on the same device which can influence the performance at a
specific time).

Although widely accepted to be one of the most appropriate benchmarks, SunSpider still only
considers parts of the set of functionalities that a JavaScript engine provides and only gives
an idea of differences in performance when comparing different device-browser combinations.

Table 5.1 shows the test results (smaller values are better) of the SunSpider JavaScript
benchmark of selected devices and device types. We have mainly focused on representing
typical device types in collaborative settings (Desktop-PC, Notebook, Tablet, Smart phone,
e-Reader and handheld game consoles) and have benchmarked their combinations with the
most common web browsers. The results show that we can basically split the device-browser
combinations into three main categories: High performance (<500ms), medium performance
(<10000ms) and low performance (>10000ms):

As expected, all high-performance devices are either notebooks or desktop PCs. In our
experiments, we have seen that these types of devices are ready to properly execute main

5.1. Technical evaluation 112

Device Device type Browser Total value

h
ig

h

HP Pavilion dv61 Notebook Internet Explorer 9 199.9ms +/-1.3%
Dell XPS 4202 Desktop-PC Chrome 23.0 247.5ms +/-1.3%
HP Compaq 6730b3 Notebook Firefox 15.0 253.0ms +/-2.5%
HP Pavilion dv61 Notebook Chrome 23.0 260.7ms +/-6.0%
Dell XPS 4202 Desktop-PC Firefox 17.0.1 293.0ms +/-1.2%
HP Compaq 6730b3 Notebook Chrome 18.0 297.0ms +/-0.9%
Dell XPS 4202 Desktop-PC Chrome 10.0 303.0ms +/-1.2%

m
ed

iu
m

Samsung Galaxy Note 10.1 Tablet Default browser 4.0.4 1173.8ms +/-0.7%
Samsung Galaxy S3 Smart phone Default browser 4.1.2 1220.1ms +/-2.8%
Samsung Galaxy Note 10.1 Tablet Firefox 17.0 1331.3ms +/-2.2%
Samsung Galaxy Note 10.1 Tablet Chrome 18.0 1351.2ms +/-1.5%
Samsung Galaxy S3 Smart phone Chrome 18.0 1376.5ms +/-2.1%
Samsung Galaxy S3 Smart phone Firefox 17.0 1400.1ms +/-4.5%
Apple iPhone 4S Smart phone Safari 1771.1ms +/-0.4%
Apple iPad 2 Tablet Safari 1812.3ms +/-0.4%
Dell XPS 4202 Destop-PC Firefox 3.6.1 2051.0ms +/-2.3%
Apple iPad Tablet Safari 3342.3 +/-1.5%
Apple iPhone 3GS Smart phone Safari 4671.2ms +/-0.4%
HTC Desire Smart phone Default browser (2.2.2) 5747.2ms +/-3.9%

lo
w

Bookeen Odyssey4 e-Reader Default browser 19245.0ms5

Apple iPhone 3G Smart phone Safari 31949.4ms +/-0.7%
Nintendo 3DS Handheld game console Default browser 104366.7ms +/-0.4%
OYO e-Reader Default browser 117964.0ms5

- Sony PSP-1000 (6.60-ME) Handheld game console Default browser not executable

14GB RAM, Intel Core i5-2410M (2.3GHz), running Windows 7 Home Premium 64-Bit SP1
24GB RAM, Intel Core2 Quad CPU (4x 2.4GHz), running Ubuntu Linux
34GB RAM, Intel Core2 Duo CPU P8800 (2x 2.66GHz), running Ubuntu Linux with Kernel 3.2.0-30
4Cybook Odyssey HD Frontlight, 128MB RAM, Cortex A8 OMAP3611 (800MHz)
5This test was only executed once instead of the repeated execution of the tests for reducing variance as it
is standard for SunSpider. This was necessary because the crash detection mechanism of the device did
not allow us to execute the full test. The measured value nevertheless gives an idea about the approximate
performance of the device.

Table 5.1.: SunSpider JavaScript benchmark results of selected devices (total values – lower
values are better)

5.1. Technical evaluation 113

functionalities of a collaborative setting such as control of the shared screen, multi-pointer
visualization, etc.

The medium-performance category is dominated by tablets and smart phones. We have
found these types of devices to be capable of easily handling one or more components at the
same time. The more powerful ones were even able to handle multi-pointers (successfully
tested e.g. with the Samsung Galaxy Note 10.1 tablet) although they were noticeably slower
than their high-performance counterparts. Devices of this type are typically used as powerful
controller devices (e.g. for mouse pointer control, text entry, displays of extended or personal
information, etc.). Components which make reduced use of JavaScript functionality but con-
tain rather static elements with regular updates have been found to be the most appropriate
for these devices. Interestingly enough, the measurement of the desktop PC running the
rather old Firefox version 3.6.1 was categorized as a medium-performance device. When this
combination is compared to other (more modern) browser implementations running on the
exact same machine (which are some of the combinations with the highest performance in
this set of measurements), we very clearly see that performance is not only defined by the
hardware capabilities of the device, and that the maturity of the browser implementation
plays an even more important role.

The devices tested in the low-performance category were either standard e-readers or
handheld game consoles. This is not surprising since the web browsing functionalities are –
compared to the other device types – not part of the main functionalities of the device and
therefore not the main focus of improvements and development. Nevertheless, it is worth
noticing, that the values of the two e-readers differ enormously. The value of the newer device
(the Bookeen Odyssey) is less than a sixth of the value of the older one (OYO) and therefore
we can see that even in this area, new device generations are going to improve performance
of their web browsers and it seems to only be a question of time before one of these device
types moves into the medium-performance category. The devices in this category have been
integrated into our testing environment mostly as a proof of concept. Their low performance
made it necessary to write special implementations of components which are very static and
prevented the execution of JavaScript code whenever possible. Nevertheless, we were able to
show that they are capable of fulfilling very simple tasks and can be used for things like text
entry or coarse-grained pointing tasks. Additionally, one of the main functionalities of such
devices (especially of e-readers) could be to display textual information on the displays.

As the table shows, there was one device which was not able to execute the test at all: the
Sony PSP-1000. This first version of the handheld game console from Sony was not even
able to load the benchmark test and was also the only device which we were not able to
integrate at all into our system. Analysis of the execution of JavaScript code showed that
the device provides very little memory for the web browser and even restricts the set of

5.1. Technical evaluation 114

JavaScript functionalities which makes it very hard to develop applications for this kind of
device. Unfortunately, we did not have access to a newer version of this device and were
therefore not able to test if these restrictions still apply for newer generations of this console.

Further measurements of different devices and browsers, and therefore hints for the device
categorization, can be found on the web or executed manually on the web page [121].

Although any JavaScript benchmark focuses only on some functionalities provided by the
JavaScript engine capabilities and the results therefore cannot be seen as strict values defin-
ing the overall performance of a web browser, the executed tests give good indications of
the approximate performance that can be expected for a specific device, and if the device is
capable of executing complex web applications in general. We have seen that measured val-
ues vary enormously and that they mostly represent the differences between different device
types. Based on the comparison with the tested devices and the experiences gained when
using them in our experimental scenarios (cp. 5.2), predictions can be made about what
types of component a device will be capable to execute and how much of the functionality of
a collaborative system can be off-loaded to the device.

5.1.2 Heterogeneity

As we have shown in the last section, the support of a device mainly depends on the capabili-
ties of its JavaScript engine. All tested devices – except for the Sony PSP-1000 – were able to
execute at least the fundamental components of the toolkit (mouse control and text input).
Based on the tested devices (cp. Table 5.2) we have therefore found strong indications, that
we are able to integrate any device that is able to connect to a WLAN network and that runs
a web browser, as long as it is able to execute the SunSpider benchmark test suite.

Which components can actually be executed on a specific device depends mainly on the
performance restrictions of the device and on whether implementations exist for the input
modalities. While especially for low-performance devices (such as e-readers) serious negative
performance values were found, we were able to show that they can nevertheless be integrated
and that efficiency could be improved with more appropriate implementations for the specific
device types.

Thanks to the reuse of standard events (e.g. mouse events) for web application control, imme-
diate compatibility with hardware extensions – such as interactive whiteboards – is possible,
which simplifies the integration of such applications even into already existing collaborative
setups.

The results show that one of the main goals of our work – to support a broad set of hetereo-

5.1. Technical evaluation 115

Device Device type Platform Support
Dell XPS 420 Desktop-PC Ubuntu 10.10 yes1

Apple MacBook Pro Notebook iOS yes1

HP Pavilion dv6 Notebook Windows 7 yes1

HP Compaq 6730b Notebook Ubuntu 12.04 yes1

Apple iPad Tablet iOS 4.3 yes
Apple iPad 2 Tablet iOS 5.0.1 yes
Samsung Galaxy Note 10.1 Tablet Android OS 4.0.4 yes
Apple iPhone 3G Smart phone iOS yes
Apple iPhone 3GS Smart phone iOS 5.0.1 yes
Apple iPhone 4 Smart phone iOS yes2

Apple iPhone 4S Smart phone iOS yes2

HTC Wildfire Smart phone Android OS yes
HTC Desire Smart phone Android OS yes
HTC Desire Z Smart phone Android OS yes
Samsung Galaxy S2 Smart phone Android OS yes
Samsung Galaxy S3 Smart phone Android OS 4.1.2 yes
OYO e-Reader - yes
Bookeen Odyssey e-Reader - yes
Nintendo 3DS Handheld game console - yes3

Sony PSP-1000 Handheld game console - no4

1Successfully tested for executing theserver component
2Needs internet connection when connecting to WLAN
3Special display setup (two screens one touch sensitive)
4Restricted JavaScript support

Table 5.2.: Devices tested for basic support of the toolkit

geneous devices which can be integrated configuration- and installation-free – has therefore
been achieved.

5.1.3 Scalability

The scalability of the system depends on the chosen architecture (and therefore the message
throughput) as well as on the involved devices, and therefore varies for the manifold possible
scenarios. To validate the scalability of the system in our main focus use case – colocated
collaboration – we performed a real scenario scaling test with a group of 13 students and one
teacher in a classroom setting (cp. 5.4). The test was performed in a scenario with a single
server instance (the teacher’s notebook) and a standard WLAN router based on the 802.11g
standard. The test showed, that even with such a simple set-up, performance and system
stability are sufficient for class sized groups and therefore for most scenarios of colocated
groups.

5.2. In-use evaluation 116

5.2 In-use evaluation

The system has been used to develop several experiment settings to do basic research on
user experience, group dynamics and comparative studies of different work processes, as well
as for an experimental real-use case scenario. These different applications have proven the
functionality and reliability of the overall system containing many different devices and have
inspired further development and technical decisions.

5.2.1 Initial experiments

The initial experiments of the project were performed during the evaluation phase of the
technology and were therefore realized based on the web plugin technology “Adobe Flex”.
The experiments were performed on a shared screen, integrating up to 4 cursors controlled
by Wiimotes. The experiments contained several tasks to examine – in collaboration with the
psychology department of the University of Fribourg – effects of collaborative applications
for group dynamics in computer supported collaborative settings.

Besides the execution of the psychological experiments, the main purpose of these experiments
were an initial contact with the problem space and getting an idea of the actual issues involved
in such scenarios.

Tasks

The following tasks were solved by one to four users interacting simultaneously, each equipped
with one Nintendo Wii-mote and working in front of a shared screen.

Sudoku

A multi-player sudoku allowed multiple users to solve the puzzle simultaneously by dragging
numbers onto empty fields (Figure 5.1a). In this task, drag and drop functionalities were
mainly examined, as well as fundamental structures of “snap” logic (the element repositions
itself within a grid depending on its drop position).

Connect the numbers

The connect the numbers task (Figure 5.1b) showed a large grid on the screen with blocks
of numbers between 1 to 60 distributed randomly over the screen. The users were asked
to connect the numbers with arrows by dragging an arrow from a block to the one with
next higher number and releasing the mouse. This experiment helped examine more fine-
grained, and therefore more precise, mouse control. Additionally, different strategies could

5.2. In-use evaluation 117

(a) Sudoku

(b) Connect the numbers (c) Pentonimo

(d) Story creation

Figure 5.1.: Initial experiments

be applied to solve this problem with multiple users which made it interesting in terms of
the inter-personal coordination between users when executing a complementary task. For a
more complex version, mathematical equations were represented instead of numbers.

Pentomino

A game where figures built from squares have to be arranged to fill a predefined space (Fig-
ure 5.1c). The figures can be dragged by a pointer and rotated by pressing a button. In
this experiment, additional control mechanisms (rotation) were introduced and even more
coordination between multiple users was necessary.

Story creation

In this task unordered parts of sentences were provided to the users, who had to put them
in the right order (Figure 5.1d). This task involves more complexity in terms of task diffi-

5.2. In-use evaluation 118

culty and can therefore help examine group dynamics and spontaneously arising hierarchies
between users.

Impacts on the toolkit

Although these experiments were run with a different technology, the fundamental concepts
of concurrency control (user-based locking mechanisms), the integration of multiple con-
trollers and their effect on drag and drop, rotation and selection mechanisms as well as the
introduction in functional components such as snapping mechanisms, which have been par-
tially ported to the final toolkit, as well as other fundamental experiences with multi-user
functionalities influenced the development of the current toolkit.

5.2.2 A Fitt of distraction

After the experiences gained from the initial experiments, experiments of more fundamental
multi-user interaction were run by Lalanne and Lisowska Masson [46] based on the initial
version of our web based toolkit. Here, the amount of distraction caused by other users
interacting with the same screen and the effects on the performance on point-and-select
tasks were examined and compared between mice and wiimotes (cp. Figure 5.2). The users
(in a single-user, 2 or 4 simultaneous users scenario) were asked to click with their pointer as
fast as possible on squares with the same color as that which was assigned to them. When
a square was clicked on it repositioned itself if the click was triggered by the associated
pointer and has to be selected again at the new position. If users clicked on squares which
did not belong to them, the square kept its position. After a specified number of clicks,
additional simulated pointers with different colors appeared on the screen fulfilling the same
task. To simulate multiple users, the implementation of this experiment introduced computer
controlled pointers with predefined movement paths. The number of simulated pointers
constantly increased and the influence of the additional visual elements on task performance
was measured.

Impacts on the toolkit

The experiment proved the feasability of multi-user applications with standard web tech-
nologies and confirmed the effectiveness of the distinguishing between different devices. This
allowed us to establish a conflict management strategy based on user-assigned components
which allow their manipulation only by predefined or dynamically assigned pointers. Addi-
tionally, the results of the experiments gave hints about the potential scalability of a collabo-
rative system in terms of usability aspects. The evaluation showed that there is a limit on the

5.2. In-use evaluation 119

number of simultaneous mouse pointers on the screen so that the efficiency of task-fulfillment
is maintained and that the system therefore should provide concepts to reduce the amount
of pointers which are visible on the screen at the same time. One direct effect of this finding
therefore inspired additional concepts such as the expiring mouse pointer mechanism.

Figure 5.2.: A Fitt of distraction – Point-and-select tasks for distraction measurement

5.2.3 Distributed user interface experiments

In collaboration with the psychology department of the University of Fribourg, experiments
were executed to examine the task solution strategies and the group dynamic effects of col-
laboration with distributed user interfaces. Multiple tasks were involved which were executed
either by a single user or by two users simultaneously.

Remote text input and mouse control (Figure 5.3a)

This task involved simultaneous text input by using the software keyboards of smart phones
(Apple iPhones) to fill in a text box displayed on the shared screen (A) in combination with
the mouse pointer control mechanism to click on the “Done” button (B) when the text input
is complete.

Ordered numbers (Figure 5.3b) and text (Figure 5.3c)

A given set of numbers or snippets of texts were distributed over the screen and had to be
rearranged into their correct order (ascending order for the numbers and the correct position
to create a grammatical sentence for the text snippets). This task used only the remote mouse
control functionality and involved some self-organized coordination between the collaborating
users.

5.2. In-use evaluation 120

(a) Text input on a shared screen using the keyboard and remote mouse control
mechanism executed on iPhones

(b) Order numbers by drag and drop (c) Order text

(d) Puzzle

Figure 5.3.: Distributed user interface experiments

Puzzle (Figure 5.3d)

The puzzle task asked users to solve a puzzle made out of a picture that had been split into
parts. Again, this task was executed only with the remote mouse control.

Impacts on the toolkit

The experiments not only provided us with feedback about how users solve more complex
tasks collaboratively, but also introduced new concepts such as the “experiment layout” com-

5.2. In-use evaluation 121

ponent1 as well as the automatized component control (the shared screen controls the avail-
able functionalities on the client devices depending on the task). The conflict management
strategy of user-specific locking developed as part of the initial experiments (5.2.1) was ported
to web technologies and was tested within this experiment in real-use the first time. Addi-
tionally, the stability and performance was further confirmed and has shown the maturation
of the toolkit towards a reliable base for collaborative application development.

5.2.4 Computer supported brain storming

In collaboration with the psychology department of the University of Bern, a further experi-
ment was conducted to compare the effects of computer support for brain storming sessions.
Here, conventional approaches (such as brain storming with white boards and post-it notes)
were compared to the solution with our system (cp. Figure 5.4) where the shared screen (A)
provides space to place notes which are simultaneously written and posted by multiple users
using a client application (B) executed on notebooks. The client involves two components

Figure 5.4.: Brain storming application

side-by-side: a textbox on the left to create a note widget with an “Add” button to send the
note to the shared screen, as well as a mouse control sensitive area on the right that can be
used to control the mouse pointer on the shared screen and to rearrange the created notes.

Impacts on the toolkit

The distributed user interface as well as the concept of a device specific layout (by introducing
components running side-by-side on a split screen) for notebooks was elaborated, which finally
resulted in the decision for a very dynamic layouting mechanism (cp. 4.2.4).

1In addition to the standard layouts for displaying modules, an experiment runner has been developed which
allows to define the flow of pre-configured settings. With this experiment runner, the modules are run
sequentially one after the other. It is possible to either define an ending condition (e.g. the fulfillment of a
task), a timeout or both.

5.2. In-use evaluation 122

5.2.5 Usability experiments

Other internal research experiments to explore usability aspects – mainly concerning the
differences between different input devices – were developed by an external developer (cp.
5.5). Here, performance of text entry, target selection and drag and drop actions as well
as mouse pointer movement precision were examined with different input devices (mouse
touchpad, iPhone, iPad). The task of text entry included the possibility to add texts to a
shared screen using the text input on the personal devices. Target selection was measured by
a task in which users had to pick up elements and drag them into a trash bin (cp. Figure 5.5a).
The precision of pointer movements was evaluated by asking the users to follow a predefined
path (cp. Figure 5.5b).

(a) Target selection and Drag and drop (b) Precise movements

Figure 5.5.: Usability experiments

Impacts on the toolkit

These experiments have shown the limits and potential improvements of our remote mouse
control implementations. Differences in smoothness of movements, precision, task-fulfillment
efficiency and subjective user experience of comfortable use were found between the tested
devices. To overcome technical differences, one of the direct results of these experiments was
the launch of a bachelor thesis for finding ways in which the mouse control components can
adapt themselves based on network latencies and client performance, since noticable differ-
ences were found with constant message update rates between the different devices. Never-
theless, the results of these experiments have shown that some devices are better suited for
specific tasks than others and that habituation plays an important role in terms of efficiency
as well as comfort.

5.2. In-use evaluation 123

5.2.6 Multi-Zoom

Figure 5.6.: Multi-Zoom

In a multi-zoom experiment (Figure 5.6) performed as a part of a student’s Master’s thesis
(cp. 5.5), the awareness of other users in collaborative information gathering was examined.
The shared screen showed an overview of a brainstorming session with detailed information
(A). Four users were asked to collaboratively find specific information on this screen in three

5.3. A modular mindmap application 124

different scenarios with the help of their iPhones. In a first scenario, the iPhones (C, D, E
and F) only displayed the user color, without any additional information. For every user,
a detail area (B) was displayed on the shared screen in which the user specific visible area
was represented. The users were able to reposition this area by moving their fingers on their
iPhones and by zooming in and out with the standard pinch-and-zoom gestures. Besides the
personal details (B), the current detail area was also represented in the overall view (A) by
squares coloured and sized according to the user specific detail area. In the second scenario,
the detailed views (B) were not displayed on the shared screen but on the personal devices
(C, D, E and F) instead. The overall view (A) still indicated the currently visible area per
user and on the personal devices, the users had the choice between two manipulation modes.
The users were allowed to either control the square on the shared screen (indicated on the
personal device by a semi-transparent overlay – C and E) or to control the content on the
personal device (D and F) which has – depending on the executed mode – the effect that
the triggered actions are inverted (e.g. dragging the content in personal device control mode
to the left results in a movement of the visual indicator on the shared screen to the right
and moving the indicator on the shared screen to the right causes a shift of the content on
the personal device to the left). The third scenario, contained the detailed area (B) on the
shared screen as well as on the personal device and therefore represents the combination out
of the two previous conditions.

Impacts on the toolkit

Within this experiment, we were able to examine the adaptiveness of existing mechanisms
(remote mouse pointers) to more advanced concepts (visible areas with zoom mechanisms).
Additionally, we were able to gain experiences with the distribution of user interfaces and
the adaptation of the level of detail of information depending on user-specific vs. shared
displays.

5.3 A modular mindmap application

When starting the development of the toolkit, we decided on a development-leading applica-
tion that would help us keep focus on the solution that we wanted to achieve. This application
would at the same time be a showcase and an example application of how a collaborative
application developed with our toolkit could be structured.

For this purpose, we chose to implement a collaborative mindmap application. Mindmaps
have always been a very popular type of collaboration application – not only because of their
obvious and very generalizable use cases but also because the complexity of such applica-

5.3. A modular mindmap application 125

tions can be varied. A mindmap application contains different elements (e.g. text entry,
reorganization of mindmaps, deleting mindmaps, display, etc.) which can be clearly sepa-
rated although the influence between them has to be addressed. Many of these components
need different means of interaction for different devices and we can think of different visual
representations depending on the available interacting devices.

During the development of the mindmap application, many different functionalities were
developed and were affected by constant changes of integrational concepts. Since the final
version of our mindmap application was mainly prepared for our real world experiment (cp.
5.4), not all of the previously implemented components were integrated because they were not
useful for this specific scenario. Nevertheless, these additional components are still available
and ready to be integrated for any potential future use cases. These additional components
therefore shall be presented in this chapter just after the overview of the latest version of the
mindmap application.

5.3.1 The latest version of the mindmap application

The latest version of the mindmap application is based on the standard modules of the dy-
namic layout and makes use of the in-built eventing mechanism, remote mouse control, au-
thentication and easy access mechanisms. The application differentiates between two modes:
execution as a shared device and as an input-device.

The shared device

The shared device (requested with the URL parameter “deviceType=multicursor”) allows
multiple clients to interact with the application either by adding notes or by using re-
mote mouse pointers (cp. Figure 5.7). It contains an application specific component (the
MindMapCanvas) which is the main component and provides space (in red) for the notes (which
adapt their size to the length of their content) to be placed, as well as a trash bin (G) to
remove notes by dropping them over this area. Besides this, the canvas component also con-
tains a toolbox at the bottom of the screen to control the current settings. The toolbox is
only accessible by the native cursor, which allows the person that controls the shared screen
to define the different options of the application.

The visible remote cursors are annotated with the capitalized first two letters of the user
name (“AL” for Alice and “BO” for Bob) to establish awareness of the cursor-to-user assign-
ments. The chosen drag and drop strategy is a simple locking mechanism (a note which is
dragged by one user is locked for others).

5.3. A modular mindmap application 126

Figure 5.7.: Shared mindmap screen

The toolbox contains a toggle button to show or hide the content of the notes (A). This allows
notes to be collected without the collaborators being able to see what other collaborators
have written. By toggling the button, all content becomes immediately visible. Additionally,
the native cursor of the shared screen can toggle the notes individually by clicking on them.

The multi-pointer functionality can be switched on and off by toggling the button shown in
B. This allows users to prevented or enabled interaction with remote pointers. The text field
next to that button is used to set the maximum number of simultaneously visible cursors. By
default, this value is set to 6 based on the results of experiments in section 5.2.2. A change
of this value causes an immediate adaptation of that limit.

The button indicated by C allows to enable and disable text entry from remote users. By
switching off this functionality, no further notes can be added to the shared screen.

The buttons indicated by D allow to increase or decrease the text size of the notes. The size
of the notes will adapt accordingly.

With button indicated by E, the background image can be reset to an empty screen while the
area of F allows to add images from any part of the system. The pictures then are represented
as new buttons which are presented in a preview when hovered over by the mouse pointer.
A click on one of these buttons switches the background to the current image. This allows

5.3. A modular mindmap application 127

for example to predefine categories to coordinate the placing and categorization of the notes.

Besides this main component, the shared device also contains a “QR” component (visible as
a tab at the top of the page) which supports easy access (cp. 4.2.6).

The input device

The client side contains the mouse pointer control component (cp. 4.3.2), a component
that contains a text box, as well as an add button to enter the text and send it to the
shared screen. The mouse pointer control not only allows to reposition the mouse but also
triggers click events and allows users to drag and drop elements on a remote device. To start
dragging, users have to touch the screen for a few seconds to switch the device to the drag
mode, indicated by a notification on the client device’s screen. If the drag mode was started
on top of a draggable element, the user is now able to move the element and to release it at its
target position with a short tap. The text input component is the same for mouse based and
touch based clients and therefore is implementation independent. That component makes
use of the distributed eventing mechanism to send the information to the server instance.

5.3.2 Non-integrated components

Because of the latest use of the application in an eductional scenario, several components
which were implemented in the past were not used for this specific use case. These compo-
nents, which are still available in the toolkit include:

Client side representation of the mindmap

A component that provides a view of the display on the client devices, with a distinction
between mouse and touch oriented devices. While mouse oriented devices get a similar rep-
resentation to what is visible on the shared screen, touch based devices are provided with a
list-oriented view of the available mindmap notes. When a note is selected, it is locked and
can only be edited with the device that has selected it.

Select and edit

A component which can be used to select a note using a remote pointer on the shared screen
with a single click. The note then appears on the personal device of the user for editing and
is locked for other devices. This component is a good example of the bi-directional commu-
nication between the client and the server instance.

5.4. Real-world experiment: Use in an educational scenario 128

Image upload

Instead of text, this component allows to send images from the personal device to the shared
screen. Here, the image is uploaded to the server and references are sent to the other devices.

Disclosure on hover

This component has not been fully developed but is rather at a proof of concept stage. It
allows to hover over a note with undisclosed content using a remote pointer disclosing the
clear-text content on the personal device. Using “disclosure on hover” can for example protect
messages, make their content available only to a specific set of users, or enrich a note with
meta-information (e.g. because the available space is restricted on the shared screen).

5.3.3 Modularity in practice

The mindmap application is a good example of what we mean when we are talking about
modular applications. Functionalities can be added or removed based on the current needs
of the application. Some components might be suitable for a specific scenario while others
not. Additionally, combining very generic components (e.g. remote mouse pointer control)
and application specific modules (e.g. the note creation component) is easily achieved and
the different elements are integrated smoothly. Moreover, the application shows how our
dynamic layouting system works with any combination of the different available components.
For example, with one further line of code, the note creation component could be added
to the shared screen as well and the layout would just add it as another tab that could be
rearranged by drag and drop. The visual scalability of our layouting system is therefore
validated and the exchangability of the different elements is achieved.

5.4 Real-world experiment: Use in an educational scenario

In addition to the experimental settings which focused on very specific tasks, we wanted to
test our system in a more real-world situation. We therefore performed an experimental run
of our case study mindmap application in the environment of a school class at the Gymnasium
Neufeld high-school in Bern.

Environment and setup

The students were asked to bring their own devices such as smart phones, tablets, etc. For
those students who did not have access to appropriate devices, additional devices were pro-
vided so that no one was excluded from participation.

5.4. Real-world experiment: Use in an educational scenario 129

The experiment was located in the regular classroom where the shared screen was projected
by a fixed projector controlled by the teacher’s notebook, which acted as a server at the same
time. The network setup was established using a standard wireless LAN router (802.11g)
without internet connection, providing an open network connection without password pro-
tection and encryption (Figure 5.8).

Figure 5.8.: Mindmap of the students’ opinions about nuclear power plants

The experiment was run with the latest version of the case study application including the
use of the dynamic layout components, encrypted communication by the distributed eventing
mechanism and other components to test the suitability of the overall integrated system for
a real-world use scenario.

Experimental run

11 of the 13 students as well as the teacher had their own smart phone. Two of them had to
be equipped with our devices (one HTC Desire smart phone and one Samsung Galaxy Note
10.1 tablet). 8 of these smart phones were iPhones, where the versions varied between 3,
3GS, 4 and 4S. Besides these, 3 Android phones from Samsung and HTC were used. Because
of (non-system related) technical issues with the HTC smart phone, it was replaced by an
iPad 2.

The connection to the open wireless LAN, as well as to the application, worked with all the
devices immediately and was considered to be easy or very easy to use by more than 75% (cp.
Figure B.3) of the users, and no one found it very difficult to use. This is surprising, especially
because they were asked to connect to the system without any means of easy access – they

5.4. Real-world experiment: Use in an educational scenario 130

had to connect to the WLAN and enter the technical URL into the web browser manually.

After they connected to the application, the students were asked to follow a line projected
on the shared screen with their remote pointers and to create notes and move them on the
screen to become familiar with the provided tools.

The teacher then asked the students to read some facts about nuclear power and to write
down their opinions (pros and cons) about nuclear power plants using the system by putting
notes onto the screen and dragging them (in an undisclosed state – the content was not visible
to the other students) depending on their content to either the “pro” or the “con” section of
the screen. The system was configured to not restrict the number of mouse pointers and
therefore all 14 users used their remote pointers at the same time.

Since the system allows to delete notes by dragging them to the trash bin, some students
started to delete notes of others, which made it necessary for the teacher to intervene by
locking the remote pointer mechanism temporarily.

After this initial experiment, the teacher switched back to conventional means of education
by presenting information, discussions and showing a video. Then, the students were asked
to point to the locations of nuclear power plants in Switzerland collaboratively by moving
their cursors to the different places on a map. Since every student only had one pointer but
multiple nuclear power plants exist in Switzerland, this implied some coordination between
them to make sure that all locations were covered. Here again, all 14 pointers were in action
simultaneously.

Finally, the students were asked to add notes to the system with ideas about what they could
do to reduce their own energy consumption and therefore to reduce the need for nuclear power,
and to order them by the impact the change would have on their personal lives.

Results and observations

During the experiment we observed that the students were very motivated to get the sys-
tem running and were rather impatient for example when connecting to the wireless LAN
although no additional delay to the usual connection time was noticeable. In addition to
this, as they were using the system, we observed spontaneous reactions such as “das isch no
fräch” which loosely translates to “this is surprising and cool”. Additionally, the students
even ignored the ringing of the bell that indicates a break between two lessons. When the
teacher called attention to the fact that it was time for a break, they said that they would
prefer to continue using of the system with the reasoning “das isch luschtig”, which means “it
is fun”.

At the end of the lesson the students were asked to fill in a questionnaire about their experi-

5.4. Real-world experiment: Use in an educational scenario 131

ences with the system. The results, as well as the questionnaire, can be found in Figure B.3
or Figure B.1 and Figure B.2 respectively.

In addition to the already mentioned finding that the users did not have major problems
connecting their devices to the system (only 7.7% found it difficult to connect), the text
entry also did not cause problems (no participant found it difficult or very difficult to enter
text), although some usability aspects such as that the text box on their devices was too
small or the extra steps for switching between the mouse pointer control and the text entry,
were mentioned as points for potential improvement.

More issues were found with the task to move objects around on the screen, which was rated
by 23.1% to be difficult. The issues were mainly to find the personal mouse pointer on the
screen (rated by 38.5% to be difficult or very difficult) as well as getting used to the catch
and release mechanism of the dragging implementation (cp. 5.3.1). Although the recognition
of the personal remote pointer on the shared screen was difficult for a large part of the class,
almost a quarter of the participants found it easy to recognize and find their pointers. This
might be due to the physical locations of the students which were not the same for all of
them and therefore, students with shorter distances to the screen might have been able to
better distinguish their pointer from others due to better visibility. In terms of perfomance,
the participants found that the system reacted either ok (76.9%) or smoothly (23.1%) when
moving the mouse pointer, and none found that there were delays.

The expectation that many of the students would own a compatible mobile device was fully
fulfilled. Only one student did not own a smart phone, whereas one other student did not
have the device with her. Although most (8) of the students owned Apple iPhones in different
versions (3G to 4S), four devices based on the Android OS produced by HTC or Samsung
were used as well. We can therefore see, that the expected heterogeneity of devices is realis-
tic and that a collaborative solution like ours has to support multiple platforms so that no
participants are excluded. Additionally, eleven of the twelve device owners use those devices
on a daily basis, mostly for calling, SMS and internet.

In terms of privacy, two students (of the 12 which owned their own device) had concerns
about using their personal devices in school – besides the undesired permanent use of elec-
tronic devices in school, the fear of a loss of data was also mentioned to be an issue. Since
our system addresses that issue explicitly, this concern could be addressed by explaining how
our system prevents the loss and/or disclosure of personal data.

Most of the students said they would install an additional application on their device for
working with a system like this in school although one of them has mentioned the precon-
dition that the application should be available for free. Opinions about whether they would
like to use such a system regularly in class were divided: While half of the class would like

5.4. Real-world experiment: Use in an educational scenario 132

to continue the use of the system, the other half of the class would prefer not to. Within
the open question of what the students liked the most and the least about the system, we
were able to find a hint which could (partially) explain this split. Some of them claimed that
the conventional way of teaching would have been at least as successful and therefore have
pointed out that the use of the system should be very carefully planned in all collaborative
and educational settings to support the actual goals so that the use would not to be seen as
an end in itself.

Similar impressions were reported by the teacher in an open interview performed after the
experiment to explore his opinion about the system and if he felt comfortable using it in an
educational context. Based on the experience gained with this experiment, he mentioned
the necessity of finding a good balance between using such a system and using traditional
teaching since it seemed to him that it is very important that such a system provides an
added value in an educational setting. He said that he could definitively see such an added
value if the system is applied in the right context.

In response to the question of whether he would be willing to reuse this or a similar system
in his classes, he said that he would not only reuse it but also would like to extend its use
for other purposes (e.g. voting and other more interactive applications).

His ideas for improvements (such as to clear all notes on the screen with a button or to apply
a mode for permanently visible cursors) were more application specific suggestions rather
than suggestions of improvements to the fundamental system and even extensions to other
fields of education (e.g. economics) as well as interest from other teachers were mentioned.
This feedback gave us strong indications that educational settings could potentially be a good
use case for our toolkit and our system.

In addition to the general observations about the user experience, and system performance,
we measured the network throughput of the system during this experiment. We measured
the data flow on the WLAN router to which the clients (the devices of the students and
the teacher) but not the server (which was connected by cable) were connected by wireless
LAN. The WLAN data input (data coming from the connected devices) reached a maximum
peak of about 85KB/s and was rarely above 50KB/s during the experiment (cp. Figure 5.9).
This measured value is the actual received data at the WLAN router and therefore includes
resent packages (e.g. because of package loss) as well as the complete overhead of the network
protocols involved.

Thinking of the average capacity of a wireless LAN network (cp. Network latency in 5.1.1)
which is about 1.6MB/s, even a standard wireless router seems to be capable of handling
much more than 14 devices and is therefore not an actual bottleneck for realistic collaborative
scenarios with these types of interaction.

5.5. Developer evaluation of the toolkit 133

Figure 5.9.: Load of the WLAN interface on the router during the execution of the real-world
use experiment (involving text addition and moving objects)

5.5 Developer evaluation of the toolkit

Two other developers used an almost final version of the TWICE toolkit to create concrete
applications and experimental setups.

One of the developers had experience with Java development but not with the Google Web
Toolkit. He worked on the usability experiments (cp. 5.2.5) run in our research group. His
feedback – collected in an open interview – was that most of the issues that he faced dur-
ing the development were not caused by our extensions but rather with the general GWT
structures and his unfamiliarity with this technology. Although aware that the application
he was developing would finally run in a multi-user scenario (using for example the provided
drag and drop library), he developed his applications purely in single-user mode and was not
testing the applications in a multi-user scenario until the end.

The integration into multi-user mode worked as expected and very smoothly with the addition
of only three lines of code (to launch the multi-pointer module). The developer mentioned
that he felt very comfortable not having to think about the complex issues of multi-user use
while developing and was instead able to use the standard functionalities of the Google Web
Toolkit.

Since he was working with a later version of the Google Web Toolkit than that which was
used for the development of the drag and drop library, he faced the issue of the current
incompatibility of the interfaces between our drag and drop library and the newly added
standard interfaces provided by the Google Web Toolkit (cp. 4.3.1). This enforces our belief
that the developer generally expects the toolkit to be compatible the standard interfaces and
therefore that the re-use of APIs (cp. 4.1.2) is an essential requirement for simplified use.

The second developer used the toolkit to set up an experiment to examine different zoom
strategies on a shared screen in a multi-user context (cp. 5.2.6) for her Master’s thesis. In the

5.5. Developer evaluation of the toolkit 134

beginning, she was unfamiliar with the Google Web Toolkit and had only basic knowledge
of the Java programming language. She was faced more with the actual distributed nature
of the final application since new interaction modalities (especially for touch based devices)
had to be introduced and therefore existing components had to be extended. In an open
interview, she mentioned that in the beginning, it was rather difficult to understand which
of the many available modules fulfilled which purposes. Improved documentation of the dif-
ferent modules and especially graphical overviews of the dependencies between the modules,
typical combinations for specific scenarios (e.g. “for systems with a shared screen, remote
pointers and text input, the modules X, Y and Z are recommended”) and code examples of
applications for the most common settings were mentioned to improve support of the devel-
oper to gain a better overview of the elements available in the toolkit. She also mentioned
some other initial issues she had when starting to use the Google Web Toolkit (GWT) due
to the unfamiliarity with the technology and needed some time to understand the concepts
and the elements of this technology. Once she understood the general idea of GWT, she said
that she thought that it was a comfortable and useful way to implement web applications.
In particular, the modular structure introduced by our toolkit and the concept of deferred
binding allowed her to focus on the requirements, functionalities and the devices involved in
the specific use case she was focusing on, which according to her substantially reduced the
complexity of development. Another big advantage that she mentioned was the fact that
she was able to build the special functionality (zoom) on top of already existing mechanisms
(remote mouse pointers), which allowed the reuse of existing code and therefore reduced the
effort of setting up the required fundamental structures (e.g. communication channels, sep-
aration of events depending on their origin, etc.). In a general statement, she said that our
toolkit was helpful for developing the application and that she had the impression that the
toolkit provided the required functionalities for the development of many different scenarios
and applications and therefore was well suited as a generic toolkit for collaborative systems.

In a self-evaluation of the toolkit, we have tried to reflect on the achievement of the initial
goals in terms of simplified development during the development of the final version of the
mindmap application (cp. 5.3). Due to more than 3.5 years experience of working with GWT
in industrial projects, the familiarity with the underlying technology was already given, which
increased awareness of the traps that make development of web applications hard (e.g. order
of instantiation and delayed accessibility of elements’ scaling dimensions). Nevertheless, the
reuse of the previously developed components such as the remote mouse pointers as well as
the dynamic layouting structures helped to create prototypes of the application, including
its main features, in a very short time. This was a big advantage in terms of coordination
with non-technical stakeholders (in this case the teacher of the school class that we ran the
real-world experiment with – 5.4) since the discussion about specific features (e.g. the tool-

5.5. Developer evaluation of the toolkit 135

bar at the bottom which is only accessible by the native cursor and which allows to control
the different functionalities) was possible based on an already running application and the
suitability of specific components was testable through activation or deactivation of them at
runtime. Besides the simplified specification phase and therefore a reduction of the risk of
creating software that does not cover the actual needs of a specific scenario, the possibil-
ity to reuse standard GWT components (e.g. widgets like buttons) – especially because of
pre-existing experience with GWT – helped to structure the different elements and therefore
to advance rather fast while handling special behavior within the multi-user scenarios with
very few additional method calls. Another benefit we experienced was the possibility to
test the application without the need to spread it over multiple devices during development.
Multiple devices were simulated by simply adding another browser window and therefore
multiple clients were executable on the same device. This was especially helpful because
the Google Web Toolkit contains a “development mode” which allows to execute the client-
side Java code (based on a browser plugin) within the web browser without pre-compilation
into JavaScript and enables the developer to use the standard tools for debugging that are
available for standard Java development. With the simultaneous execution of the different
clients on the development machine it is possible to execute and comfortably debug the com-
munication between the different instances, and therefore the whole life-cycle of the overall
system. As the first of the other developers mentioned, we also experienced the issue of the
non-standardized API of the drag and drop functionality. Since all other components follow
the conventions of standard APIs and the developer is therefore used to not having to worry
about learning new interfaces, the impact of this exception seemed to us to even be stronger
than it would have if all other components would have had only their own interfaces as well.
Nevertheless, in general, we were able to see that our toolkit was very helpful for developing
and customizing this application in very short time and that it substantially simplified the
development process.

To conclude, it seems like our goal to reduce the additional complexity for the development
of standard multi-user applications has, for the most part, been achieved. Components (such
as the drag and drop library) appear to be the most comfortable to use if they are compatible
with their corresponding standard interfaces and therefore have to be constantly adapted to
newly integrated APIs in standard GWT. The complexity of development increases if special
behaviour is needed (e.g. additional functionalities are required which are affected by the
distributed nature of the system) but can be simplified when basing it on already existing
code of similar or related components.

Although general documentation of the different elements in particular could still be im-
proved, it can be said that our toolkit provides an appropriate guideline and frame for the
development of standard collaborative applications and allows the extension of functionali-

5.6. Discussion 136

ties. We have indications that developers with pre-existing GWT skills will quickly become
familiar with the newly introduced concepts and APIs and therefore the steepest learning
curve is the one to become accustomed to the concepts and elements of standard GWT.

5.6 Discussion

The theoretical and technical evaluations indicate that the necessary performance and scal-
ability can be provided for most of the realistic scenarios and show that a broad range of
currently available devices are fully or at least partially supported by our system. Addition-
ally, the different experiments performed have not only proven that the toolkit is stable and
reliable but at the same time have implied challenges (e.g. handling conflicts between multi-
ple cursors, distribution and “remote control” of user interfaces, overcoming issues of network
latencies, calibrating message rates) which had to be solved to provide the needed functional-
ities for being able to establish the experimental settings. They were therefore useful not only
for evaluation but also for driving the development of useful and reusable components and
improvements, and at the same time ensured that the developed components were generic
enough to be applied to different scenarios. In particular, the collaboration with experts from
other fields (e.g. HCI and psychology) helped to avoid a purely technology-driven develop-
ment approach and brough up explicit needs for real use functionalities which then had to
be realized with the available technology. This ensured that the development of the toolkit
was headed from the beginning towards a solution whose development did not stop at the
specification phase but whose use and functionality was validated in real applications.

To evaluate the suitability of our toolkit for real-life applications, our experiment in an edu-
cational setting showed that the system is capable of handling 14 simultaneous users and we
have strong indications that it would support even more than that. Additionally, it gave us
positive feedback about the usability of the system from an end-user perspective, although
the results show that especially in the area of user interface design improvements are still
possible and necessary.

Software developers working with our toolkit have mentioned that using our extensions of
the underlying standard technology introduced very little additional required knowledge and
that they therefore did not have to worry about the complex functionalities needed in a dis-
tributed multi-user scenario.

We can therefore conclude, that although improved implementations and more complex sce-
narios would still have to be elaborated and that additional evaluations (e.g. with experienced
GWT developers) would help to further examine if the defined requirements have been fully
fulfilled – the available results are good indicators that we have achieved our main goal of

5.6. Discussion 137

creating a toolkit which provides the necessary structures for coordinated and reusable soft-
ware development for collaborative applications. TWICE has become an important tool for
the development of software for experiments in our research group and has shown that it has
several interesting use-cases in non-academic settings as well.

6
Conclusion

Computer supported collaboration is an interesting field affected by constant changes. The
devices involved, available networking infrastructure and technology awareness and habitu-
ation of users has changed a lot within the last years and will further evolve in the future.
Technologies, platforms and device types constantly appear and disappear and the leading
companies within these fields, and therefore the platforms they provide, may not be the
leaders in the future. All this makes the development and the maintenance of heterogeneous
systems very difficult and often implies redesign, restructuring and partially even rewriting
of whole applications to adapt to these changes.

We have therefore developed a toolkit (TWICE) for the development of collaborative appli-
cations based on web technologies in order to avoid the necessary and constant modifications
needed to keep existing code running. Using web technologies, we can focus on the new
opportunities which are provided by more advanced devices and web browsers and therefore
to put work into the extension rather than the maintenance of code.

In TWICE, we explicitely address the issues of device heterogeneity in terms of support
(to make sure that no users are excluded from a collaborative setting because they own a
non-supported device) as well as in terms of adaptibility to device-dependant specificities by
providing device and/or device-type specific implementations of functionalities depending on
the capabilities and input modalities of a particular device.

To support spontaneous collaboration, another general goal of our toolkit is to establish sim-
plified access to the system for end-users. Particularly in situations of ad-hoc and short-term
collaboration, users might not be willing to execute complex installation and configuration
procedures to launch a collaborative application. We have therefore found ways to provide
access to a collaborative system without any installation and/or configuration requirements.

As a third general goal, we have focused on the simplification of the development process of
multi-user and multi-device applications. We did thus recycle the syntax that is provided for

138

139

single-user application and extend it with additional functionalities which make it applica-
ble for multi-user applications. This reduces the complexity of development, debugging and
testing of multi-user applications (since they can often simply be treated in a similar manner
to single-user applications).

Finally, our toolkit provides basic functionalities required for most collaborative settings, a
modular and extensible structure which allows comfortable replacement of components or
implementations of specific functionalities at runtime, and more concrete software modules
which are representative of how to integrate further functionalities into the already existing
toolkit. The modularity, and therefore the possiblity to include, exclude and replace modules
dynamically, simplifies experimentation with and comparison between different approaches
for similar issues as well as the (re-)combination of different functionalities to examine the
most suitable set-ups for specific tasks.

Contribution

The state of the art concerning the main issues related to computer supported collaborative
systems (2) showed a need to implement our own toolkit for the development of collabora-
tive applications since our research context (3.1) requires functionalities (3.2) which were not
possible to fulfill, which would require extensive customizations and work-arounds or would
have ended in unsatisfying compromises when being realized with existing tools.

By choosing web technologies in general and the Google Web Toolkit in particular, we have
chosen a technology stack (cp. 3.3) as the base of our toolkit which will likely be future-safe
due to its widespread use, its large developer community and its continuous adaptation to
new features and concepts, while ensuring backwards compatibility (because the masses of
already existing, “legacy” documents and web applications which still have to be supported
by browsers). Web technologies are widely accepted by developers in general since they are
the base of a very large number of existing applications and are gaining in importance in their
role as a dynamic and platform-independent software stack runnable on a heterogeneous set
of devices. Although dependent on the actual implementation of a software, web technolo-
gies provide native general means to improve their availability (by redundancy) as well as
their scalability (by load-balancing) since the capability to handle a large number of users
simultaneously has been one of the key requirements of web technologies from its beginnings.
Because of the built-in availability of web browsers in almost any modern personal device, the
support of web applications is provided in almost any context in an installation and configu-
ration free way. Besides the advantage of being able to create true walk-up-and-use scenarios
and therefore to simplify and encourage spontaneous collaborative settings, the execution of
application code in a browser sandbox provides fundamental means to ensure privacy. Since

140

the browser sandbox restricts capabilities of applications and allows users to explicitly define
permissions for a specific privacy and security critical functionality at run-time, means for
precise control of accessible resources (e.g. private data, cameras, etc.) are provided to the
user.

In our toolkit (4) we have introduced general concepts such as the reuse of APIs, replacable
and extensible modules (4.1) to be able to ensure simplified development, and the reduction of
differences in development between multi-user and single-user applications to establish com-
patibility with mature and well-known development tools. These concepts not only allow to
provide varying implementations depending on device dependant specificities but also enable
optimization of the use of the device’s resources thanks to the system-managed life-cycles,
and therefore the dynamic allocation and release of occupied resources of the different soft-
ware components involved. Adaptations of the software to the specificities of heterogeneous
devices are therefore possible at runtime which allows them to react in a very flexible man-
ner to the incompatibilities, user-preferences and performance issues of the different devices
involved.

We have also implemented basic functionalities to provide tools to overcome general issues
of collaborative systems (4.2). To reduce delays in the complex network communications
involved in distributed systems, a messaging mechanism has been introduced and integrated
through the well-known pattern of an application-wide event bus. The centralized message
handling not only allows optimization of network traffic but also provides security function-
alities such as receiver-specific encryption, the provision of digital signing of messages as
well as checks for data integrity. In addition to simplifications of user access to an already
existing collaborative setting (through QR codes, WiFi hotspot landing pages, etc.), multi-
user support is ensured through remotely controlled multiple mouse pointers, multi-focus
functionalities as well as replacable conflict management strategies (e.g. pure locking mech-
anisms, optimistic and pessimistic concurrency control). Dynamic layouting mechanisms
and concepts of user interface distribution complete the basic set of functionalities for the
development of collaborative systems, allowing the development of complex multi-display
applications.

The more specific software modules (4.3) that we provide such as drag and drop and collabo-
rative web browsing functionalities are examples of how the general concepts of the TWICE
toolkit can be applied in concrete use cases and show how interacting components can be
integrated with each other in a collaborative context. Besides their actual functionality, they
act as showcases for further extensions and component development by third party develop-
ers.

141

In-use evaluations in different experimental scenarios (5.2) and an experiment in a real-world
classroom situation (5.4) have shown that applications developed with our toolkit fulfill
the requirements of realistic collaborative scenarios such as support for heterogeneous de-
vices, adequate performance and scalability, and functional requirements such as dynamic
replacement and combination of application modules. Through abstraction of the complexity
of multi-user scenarios within our toolkit, we have achieved the goal of providing extended
functionalities without the need for developers to learn new APIs (unless they want to obtain
more fine-grained control over an extended functionality). The achievement of the simpli-
fication of the development of multi-user functionalities has been validated through open
interviews with developers with varying levels of experience with the technologies involved
(5.5).

Future work

During this thesis, we were able to develop the necessary concepts, structures and initial
components for a generic toolkit. Concrete potential improvements are the adaptation of the
drag and drop library to the standard APIs, as well as the continuous update and extension
of the documentation according to the changes in the TWICE toolkit as well as the provision
of additional examples of code to provide starting points for developers with very specific
needs. Other future work would involve further development of concrete components (e.g.
instant messaging, video conferencing, document exchange, etc.) which would allow to es-
tablish more complex collaborative systems through the combination of powerful application
modules. Additionally, device compatibility and further refinements of implementations to
device-dependant specificities can further be improved and other actions could be taken to
improve user experience.

In addition to the extension of the toolkit functionalities, adaptations to specific collaborative
situations and psychological aspects (e.g. group dynamics) should be taken into account. Dif-
ferences between group-sizes, colocated and remote as well as synchronous and asynchronous
collaboration should further be examined to gain knowledge about the factors influencing
successful and efficient collaboration. User acceptance of the system in general, and the spe-
cific components in particular could therefore be evaluated in different scenarios and actions
could be taken to improve the comfort of use of such collaborative systems.

Furthermore, more examinations would be needed in terms of the acceptance of the toolkit
by third party developers, as would further improvements and simplifications of APIs to
continuously flatten the initial learning curve for less experienced developers and therefore
to let them become familiar with the creation of collaborative applications more easily. Ad-
ditionally, real-world experiments would lead to indications about what is missing in terms

142

of concrete functionalities. We will therefore stay in contact with the high-school where we
were allowed to run our real-use experiment in order to be able to perform further evaluation
and develop more specialized applications for educational scenarios. Additionally, we will try
to find other fields of potential application (e.g. in business) to get a broad set of different
contexts and therefore to improve the generalizability of the fundamental toolkit while pro-
viding very specific application modules for reuse in similar situations.

To keep the toolkit alive and to spread its use outside of our research group, we have re-
leased the code under a very open license and hope that we will be able to create a developer
community with users from academics as well as industry so that our toolkit can evolve with
most current knowledge and newly introduced concepts while getting feedback about the
suitability of the different components for real-world applications.

Epilogue

We are convinced that there is a strong need for the integration of the different existing
solutions for the issues that collaborative systems face into a unified platform to be able to
compare, exchange and re-combine the different components and therefore to execute exper-
iments to find the most appropriate solutions for specific collaborative tasks. By providing
our modular and extensible toolkit, we have tried to create a technological base structure
which allows the integration of the manifold solutions for the different specific issues related
to establishing collaborative systems that we found in the related work.

We believe that web technologies are the best base for such a unified platform due to their
broad acceptance. Several leading IT companies also seem to believe that the web technology
stack will become a proper software engineering platform for heterogeneous devices and for
collaborative applications in the near future. Microsoft, for example submitted new pointer
specifications to the W3C very recently ([112]) and Google is working intensively on the
standardization of real time communication through web technologies ([124]).

Although we are aware of the fact that our toolkit does not solve all issues related to the
development of collaborative applications, we think that we have created a solid base for
further development and therefore we hope that our approach, the presented ideas and our
technological decisions contribute to the challenging but necessary task of simplification of
the development process of distributed collaborative applications, and that at some point in
the future our toolkit will become the base of one of the “[. . .] “breakthrough” systems that
will influence the next generation of toolkits” [65].

A
Acronyms

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CSCW Computer Supported Collaborative Work

CSS Cascading Style Sheet

CIA Confidentiality, Integrity, Availability

DOM Document Object Model

DUI Distributed User Interface

GUI Graphical User Interface

GWT Google Web Toolkit

HCI Human Computer Interaction

HID Human Interface Device

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICE Interactive Collaborative Environments

IDE Integrated Development Environment

JavaEE Java Enterprise Edition

JavaME Java Micro Edition

JavaSE Java Standard Edition

JSNI JavaScript Native Interface

JSON JavaScript Object Notation

JSON-P JavaScript Object Notation with padding

143

144

LAN Local Area Network

MAN Metropolian Area Network

MDA Model Driven Architecture

MPG Mixed Presence Groupware

MPX Multi-Pointer X Server

MDG Multi-Display Groupware

NTP Network Time Protocol

OSGi Open Services Gateway Initiative

PDA Personal Digital Assistant

QoS Quality of Service

QR Quick Response

REST Representational State Transfer

RIA Rich Internet Application

SDG Single Display Groupware

SDK Software Development Toolkit

TCP Transmission Control Protocol

TWICE Toolkit for Web-based Interactive Collaborative Environments

UDP User Datagram Protocol

URL Uniform Resource Locator

UUID Universal Unique Identifier

UX User eXperience

VNC Virtual Network Computing

VM Virtual Machine

WAN Wide Area Network

WIMP Window, Icon, Menu, Pointing device

WYSIWIS What You See Is What I See

XHR XMLHttpRequest

B
Resources and extended code extracts

< p r o j e c t xmlns=" h t t p : / / maven . apache . org /POM/ 4 . 0 . 0 "
2 xmlns : x s i = " h t t p : / / www.w3 . org /2001/XMLSchema−i ns tance " x s i : schemaLocation=" h t t p : / / maven .

apache . org /POM/ 4 . 0 . 0 h t t p : / / maven . apache . org / xsd / maven−4.0.0. xsd ">
<modelVersion>4 .0 .0 < / modelVersion>

4 <groupId>ch . u n i f r . pa i . tw ice . my l i b ra ry < / groupId>
< a r t i f a c t I d >MyLibrary< / a r t i f a c t I d >

6 <vers ion>0.0.1−SNAPSHOT< / vers ion>
<name>MyLibrary< / name>

8 < d e s c r i p t i o n / >
< b u i l d >

10 <resources>
<resource>

12 < d i r e c t o r y >src / main / java< / d i r e c t o r y >
< inc ludes>

14 < inc lude >∗∗ / c l i e n t /∗∗< / inc lude >
< inc lude >∗∗ / p u b l i c /∗∗< / inc lude >

16 < inc lude >∗∗ /∗ . gwt . xml< / inc lude>
< / inc ludes>

18 < / resource>
< / resources>

20 <p lug ins >
<p lug in >

22 < a r t i f a c t I d >maven−compi ler−p lug in < / a r t i f a c t I d >
< c o n f i g u r a t i o n >

24 <source>1.6< / source>
< t a r g e t >1.6< / t a r g e t >

26 < / c o n f i g u r a t i o n >
< / p lug in >

28 < / p lug ins >
< / b u i l d >

30 <dependencies>
<dependency>

32 <groupId>com. google . gwt< / groupId>
< a r t i f a c t I d >gwt−s e r v l e t < / a r t i f a c t I d >

34 <vers ion>2 .4 .0 < / vers ion>
<scope>compile< / scope>

36 < / dependency>

145

146

<dependency>
38 <groupId>com. google . gwt< / groupId>

< a r t i f a c t I d >gwt−user< / a r t i f a c t I d >
40 <vers ion>2 .4 .0 < / vers ion>

<scope>provided< / scope>
42 < / dependency>

<dependency>
44 <groupId>com. google . gwt< / groupId>

< a r t i f a c t I d >gwt−dev< / a r t i f a c t I d >
46 <vers ion>2 .4 .0 < / vers ion>

<scope>provided< / scope>
48 < / dependency>

< / dependencies>
50 < / p r o j e c t >

Listing B.1: An example POM-file for library components

147

2

< p r o j e c t xmlns=" h t t p : / / maven . apache . org /POM/ 4 . 0 . 0 " xmlns : x s i = " h t t p : / / www.w3 . org /2001/
XMLSchema−i ns tance "

4 x s i : schemaLocation=" h t t p : / / maven . apache . org /POM/ 4 . 0 . 0 h t t p : / / maven . apache . org / xsd / maven
−4.0.0. xsd ">

<modelVersion>4 .0 .0 < / modelVersion>
6 <groupId>ch . u n i f r . pa i . tw ice . myModule< / groupId>

< a r t i f a c t I d >MyModule< / a r t i f a c t I d >
8 <vers ion>0.0.1−SNAPSHOT< / vers ion>

<name>MyModule< / name>
10 < b u i l d >

<sourceDi rec to ry>$ { basedi r } / s rc / main / java< / sourceDi rec to ry>
12 < ou tpu tD i r ec to r y >$ { basedi r } / s rc / main / webapp /WEB−INF / c lasses< / ou tpu tD i r ec to r y >

<resources>
14 <resource>

< d i r e c t o r y >$ { basedi r } / s rc / main / java< / d i r e c t o r y >
16 <excludes>

<exclude>∗∗ /∗ . java< / exclude>
18 < / excludes>

< / resource>
20 < / resources>

<p lug ins >
22 <p lug in >

<groupId>org . apache . maven . p lug ins< / groupId>
24 < a r t i f a c t I d >maven−compi ler−p lug in < / a r t i f a c t I d >

<vers ion>2 .3 .2 < / vers ion>
26 < c o n f i g u r a t i o n >

<source>1.6< / source>
28 < t a r g e t >1.6< / t a r g e t >

< / c o n f i g u r a t i o n >
30 < / p lug in >

<p lug in >
32 <groupId>org . apache . maven . p lug ins< / groupId>

< a r t i f a c t I d >maven−war−p lug in < / a r t i f a c t I d >
34 <vers ion>2 .1 .1 < / vers ion>

< / p lug in >
36 < / p lug ins >

< / b u i l d >
38 <dependencies>

<dependency>
40 <groupId>com. google . gwt< / groupId>

< a r t i f a c t I d >gwt−s e r v l e t < / a r t i f a c t I d >
42 <vers ion>2 .4 .0 < / vers ion>

<scope>compile< / scope>
44 < / dependency>

<dependency>
46 <groupId>com. google . gwt< / groupId>

< a r t i f a c t I d >gwt−user< / a r t i f a c t I d >
48 <vers ion>2 .4 .0 < / vers ion>

<scope>provided< / scope>
50 < / dependency>

<dependency>
52 <groupId> javax . v a l i d a t i o n < / groupId>

148

< a r t i f a c t I d > v a l i d a t i o n−api< / a r t i f a c t I d >
54 <vers ion> 1 . 0 . 0 .GA< / vers ion>

< c l a s s i f i e r >sources< / c l a s s i f i e r >
56 <scope>provided< / scope>

< / dependency>
58 <dependency>

<groupId>ch . u n i f r . pa i . mice . gwt . l ayou t < / groupId>
60 < a r t i f a c t I d >DynamicLayout_noConfig< / a r t i f a c t I d >

<vers ion>0.0.1−SNAPSHOT< / vers ion>
62 < / dependency>

< / dependencies>
64 <packaging>war< / packaging>

< / p r o j e c t >

Listing B.2: An example POM-file for module components

149

Figure B.1.: Results of the original questionnaire in its original version

150

Figure B.2.: Translation of the results of the original questionnaire

151

Figure B.3.: Results of the user evaluation of the system in the real world use case

C
Website of the Project

A web-page was created for this project: http://olinux.github.com/twice/

• The API of the project.

• The binaries and sources of the toolkit code.

152

Bibliography

[1] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks. In Proceed-
ings of the 12th International Conference on Principles of Distributed Systems, OPODIS
’08, page 259–274, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] F. Almenarez, A. Marin, D. Diaz, A. Cortes, C. Campo, and C. Garcia-Rubio. A trust-
based middleware for providing security to ad-hoc peer-to-peer applications. In Sixth
Annual IEEE International Conference on Pervasive Computing and Communications,
2008. PerCom 2008, pages 531 –536, March 2008.

[3] Magnus Ingmarsson Anders Larsson. A development platform for distributed user in-
terfaces. pages 704–, 2007.

[4] J. Aycock. A brief history of just-in-time. ACM Computing Surveys (CSUR),
35(2):97–113, 2003.

[5] Peter Backx, Tim Wauters, Bart Dhoedt, and Piet Demeester. A comparison of peer-
to-peer architectures. In In EURESCOM, 2002.

[6] Ronald M. Baecker, Jonathan Grudin, William Buxton, and Saul Greenberg. Read-
ings in Human-Computer Interaction: Toward the Year 2000, Second Edition. Morgan
Kaufmann, 2nd edition, April 1995.

[7] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and
G. Woetzel. Basic support for cooperative work on the world wide web. Int. J. Hum.-
Comput. Stud., 46(6):827–846, June 1997.

[8] R. Bentley, T. Horstmann, and J. Trevor. The world wide web as enabling technol-
ogy for CSCW: the case of BSCW. Computer Supported Cooperative Work (CSCW),
6(2):111–134, 1997.

[9] Sumeer Bhola, Guruduth Banavar, and Mustaque Ahamad. Responsiveness and con-
sistency tradeoffs in interactive groupware. In Proceedings of the 1998 ACM conference

153

Bibliography 154

on Computer supported cooperative work, CSCW ’98, page 79–88, New York, NY, USA,
1998. ACM.

[10] Kellogg S. Booth, Brian D. Fisher, Chi Jui Raymond Lin, and Ritchie Argue. The
"mighty mouse" multi-screen collaboration tool. In Proceedings of the 15th annual ACM
symposium on User interface software and technology, UIST ’02, page 209–212, New
York, NY, USA, 2002. ACM.

[11] Uwe M. Borghoff and Johann H. Schlichter. Computer-Supported Cooperative Work:
Introduction to Distributed Applications. Springer, September 2000.

[12] Tony Bourke. Server Load Balancing. O’Reilly Media, Inc., August 2001.

[13] V. Cahill, E. Gray, J.-M. Seigneur, C.D. Jensen, Yong Chen, B. Shand, N. Dimmock,
A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. Di Marzo Seru-
gendo, C. Bryce, M. Carbone, K. Krukow, and M. Nielson. Using trust for secure collab-
oration in uncertain environments. IEEE Pervasive Computing, 2(3):52 – 61, September
2003.

[14] K. Mani Chandy, Joseph Kiniry, Adam Rifkin, and Daniel Zimmerman. Webs of archived
distributed computations for asynchronous collaboration. The Journal of Supercomput-
ing, 11(2):101–118, 1997.

[15] P. H. Chia, Y. Yamamoto, and N. Asokan. Is this app safe?: a large scale study
on application permissions and risk signals. In Proceedings of the 21st international
conference on World Wide Web, page 311–320, 2012.

[16] Eric Cronin, Anthony R. Kurc, Burton Filstrup, and Sugih Jamin. An efficient syn-
chronization mechanism for mirrored game architectures. In Architectures”, Multimedia
Tools and Applications, page 67–73. ACM Press, 2003.

[17] James R. Dabrowski and Ethan V. Munson. Is 100 milliseconds too fast? In CHI ’01
extended abstracts on Human factors in computing systems, CHI EA ’01, page 317–318,
New York, NY, USA, 2001. ACM.

[18] Brian de Alwis, Carl Gutwin, and Saul Greenberg. GT/SD: performance and simplicity
in a groupware toolkit. In Proceedings of the 1st ACM SIGCHI symposium on Engineer-
ing interactive computing systems, EICS ’09, page 265–274, New York, NY, USA, 2009.
ACM.

[19] J. A. R. P. de Carvalho, H. Veiga, C. F. R. Pacheco, and A. D. Reis. Performance
evaluation of wi-fi IEEE 802.11 a, g WPA2 PTP links: a case study. Lecture Notes in
Engineering and Computer Science, 2198, 2012.

[20] A. Dix and C. Sas. Mobile personal devices meet situated public displays: Synergies
and opportunities. International Journal of Ubiquitous Computing, pages 11–28, 2010.

Bibliography 155

[21] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying model-based tech-
niques to the development of UIs for mobile computers. In Proceedings of the 6th inter-
national conference on Intelligent user interfaces, IUI ’01, page 69–76, New York, NY,
USA, 2001. ACM.

[22] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: some issues and experi-
ences. Commun. ACM, 34(1):39–58, January 1991.

[23] Alan W. Esenther. Instant co-browsing: Lightweight real-time collaborative web brows-
ing. In In Proc. Of the 11th Int, page 7–11. Press, 2002.

[24] Colin Fidge. Timestamps in message-passing systems that preserve the partial ordering.
In 11th Australian Computer Science Conference, pages 55–66, 1988.

[25] David Flanagan. JavaScript: the definitive guide. O’Reilly, Beijing, 6th ed edition,
2011.

[26] Saul Greenberg, Michael Boyle, and Jason Laberge. PDAs and shared public displays:
Making personal information public, and public information personal. Technical report,
Personal Technologies, 1999.

[27] Saul Greenberg and David Marwood. Real time groupware as a distributed system:
concurrency control and its effect on the interface. In Proceedings of the 1994 ACM
conference on Computer supported cooperative work, CSCW ’94, page 207–217, New
York, NY, USA, 1994. ACM.

[28] D. Grolaux, P. Van Roy, and J. Vanderdonckt. Migratable user interfaces: beyond mi-
gratory interfaces. In The First Annual International Conference on Mobile and Ubiqui-
tous Systems: Networking and Services, 2004. MOBIQUITOUS 2004, pages 422 – 430,
August 2004.

[29] Carl Gutwin. The effects of network delays on group work in real-time groupware. In
In Proceedings of European Conference on Computer-Supported Cooperative Work, page
299–318, 2001.

[30] Carl A. Gutwin, Michael Lippold, and T. C. Nicholas Graham. Real-time groupware
in the browser: testing the performance of web-based networking. In Proceedings of
the ACM 2011 conference on Computer supported cooperative work, CSCW ’11, page
167–176, New York, NY, USA, 2011. ACM.

[31] Richard Han, Veronique Perret, and Mahmoud Naghshineh. WebSplitter: a unified
XML framework for multi-device collaborative web browsing. In Proceedings of the 2000
ACM conference on Computer supported cooperative work, CSCW ’00, page 221–230,
New York, NY, USA, 2000. ACM.

Bibliography 156

[32] Jason Hill and Carl Gutwin. The MAUI toolkit: Groupware widgets for group awareness.
Computer-Supported Cooperative Work, page 5–6, 2004.

[33] Pamela J. Hinds and Sara Kiesler. Distributed Work. MIT Press, May 2002.

[34] Juan Pablo Hourcade and Benjamin B. Bederson. Architecture and implementation of
a java package for multiple input devices (MID). Technical report, 1999.

[35] Qi Huang, Daniel A. Freedman, Ymir Vigfusson, Ken Birman, and Bo Peng. Kevlar:
a flexible infrastructure for wide-area collaborative applications. In Proceedings of the
ACM/IFIP/USENIX 11th International Conference on Middleware, Middleware ’10,
page 148–168, Berlin, Heidelberg, 2010. Springer-Verlag.

[36] Y. Huang and C. Kintala. Software fault tolerance in the application layer. Software
Fault Tolerance, 3:231–248, 1995.

[37] Peter Hutterer and Bruce H. Thomas. Groupware support in the windowing system. In
Proceedings of the eight Australasian conference on User interface - Volume 64, AUIC
’07, page 39–46, Darlinghurst, Australia, Australia, 2007. Australian Computer Society,
Inc.

[38] Hans-Christian Jetter, Michael Zöllner, Jens Gerken, and Harald Reiterer. Design and
implementation of post-WIMP distributed user interfaces with ZOIL. International
Journal of Human-Computer Interaction, 28(11):737–747, November 2012.

[39] Brad Johanson, O. Fox, and Terry Winograd. The interactive workspaces project: Expe-
riences with ubiquitous computing rooms. IEEE Pervasive Computing, 1:67–74, 2002.

[40] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust
algorithm for reputation management in P2P networks. In Proceedings of the 12th
international conference on World Wide Web, WWW ’03, page 640–651, New York,
NY, USA, 2003. ACM.

[41] Yugo Kaneda, Mika Minematsu, Masato Saito, Hiroto Aida, and Hideyuki Tokuda. AN-
GEL: a hierarchical state synchronization middleware for mobile ad-hoc group gaming.
In In Proceedings of International Workshop on Pervasive Gaming Applications at Per-
vasive (Pergames), pages 30–35, 2004.

[42] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network security: private com-
munication in a public world, second edition. Prentice Hall Press, Upper Saddle River,
NJ, USA, second edition, 2002.

[43] Ned Kock, editor. Encyclopedia of E-Collaboration. IGI Global, December 2007.

[44] Gerd Kortuem, Jay Schneider, Dustin Preuitt, Thaddeus G. C. Thompson, Stephen
Fickas, and Zary Segall. When peer-to-peer comes face-to-face: Collaborative peer-to-
peer computing in mobile ad hoc networks. In Proceedings of the First International

Bibliography 157

Conference on Peer-to-Peer Computing, P2P ’01, page 75–, Washington, DC, USA,
2001. IEEE Computer Society.

[45] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algo-
rithms, and Systems. Cambridge University Press, April 2008.

[46] Denis Lalanne and Agnes Lisowska Masson. A fitt of distraction: measuring the impact
of distracters and multi-users on pointing efficiency. In CHI ’11 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’11, page 2125–2130, New York, NY,
USA, 2011. ACM.

[47] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21(7):558–565, July 1978.

[48] Hemang Lavana and Franc Brglez. CollabWiseTk: a toolkit for rendering stand-alone
applications collaborative. In In Seventh Annual Tcl/Tk Conference. USENIX, 2000.

[49] Yao-Nan Lien, Hung-Chin Jang, and Tzu-Chieh Tsai. A MANET based emergency
communication and information system for catastrophic natural disasters. In 29th IEEE
International Conference on Distributed Computing Systems Workshops, 2009. ICDCS
Workshops ’09, pages 412 –417, June 2009.

[50] Matthew Liotine. Mission-Critical Network Planning. Artech House, 2003.

[51] Marc Loy, Robert Eckstein, and Dave Wood. Java Swing. O’Reilly Media, 0002 edition,
November 2002.

[52] Andrés Lucero, Jaakko Keränen, and Tero Jokela. Social and spatial interactions: shared
co-located mobile phone use. In Proceedings of the 28th of the international conference
extended abstracts on Human factors in computing systems, CHI EA ’10, page 3223–3228,
New York, NY, USA, 2010. ACM.

[53] K. Luyten and K. Coninx. Distributed user interface elements to support smart inter-
action spaces. In Seventh IEEE International Symposium on Multimedia, page 8 pp.,
December 2005.

[54] Jérémie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter Van Roy. A toolkit
for peer-to-peer distributed user interfaces: concepts, implementation, and applications.
In Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing
systems, EICS ’09, page 69–78, New York, NY, USA, 2009. ACM.

[55] Jérémie Melchior, Jean Vanderdonckt, and Peter Van Roy. A model-based approach
for distributed user interfaces. In Proceedings of the 3rd ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’11, page 11–20, New York, NY, USA,
2011. ACM.

Bibliography 158

[56] B. Michotte and J. Vanderdonckt. GrafiXML, a multi-target user interface builder
based on UsiXML. In Fourth International Conference on Autonomic and Autonomous
Systems, 2008. ICAS 2008, pages 15 –22, March 2008.

[57] David L. Mills. Internet time synchronization: the network time protocol. IEEE Trans-
actions on Communications, 39:1482–1493, 1991.

[58] S. Mogan and Weigang Wang. The impact of web 2.0 developments on real-time group-
ware. In 2010 IEEE Second International Conference on Social Computing (SocialCom),
pages 534 –539, August 2010.

[59] G. Mori, F. Paterno, and C. Santoro. Design and development of multidevice user inter-
faces through multiple logical descriptions. IEEE Transactions on Software Engineering,
30(8):507 – 520, August 2004.

[60] Meredith Ringel Morris. A survey of collaborative web search practices. In Proceedings
of the twenty-sixth annual SIGCHI conference on Human factors in computing systems,
CHI ’08, page 1657–1660, New York, NY, USA, 2008. ACM.

[61] B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer networks.
IEEE Communications Magazine, 32(9):33 –38, September 1994.

[62] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, and M. Roccetti. On maintaining interactiv-
ity in event delivery synchronization for mirrored game architectures. In IEEE Global
Telecommunications Conference Workshops, 2004. GlobeCom Workshops 2004, pages
157 – 165, December 2004.

[63] Sushil K. Prasad, Vijay Madisetti, Shamkant B. Navathe, Raj Sunderraman, Erdogan
Dogdu, Anu Bourgeois, Michael Weeks, Bing Liu, Janaka Balasooriya, Arthi Hariharan,
Praveen Madiraju, Srilaxmi Malladi, Raghupathy Sivakumar, Alex Zelikovsky, Yanqing
Zhang, and Saied Belkasim. Syd: A middleware testbed for collaborative applications
over small heterogeneous devices and data stores. In In 5th ACM/IFIP/USENIX Inter-
national Middleware Conference, page 22, 2004.

[64] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, and K. Nahrstedt.
A middleware infrastructure for active spaces. IEEE Pervasive Computing, 1(4):74 – 83,
December 2002.

[65] Mark Roseman and Saul Greenberg. Building real-time groupware with GroupKit, a
groupware toolkit. ACM Trans. Comput.-Hum. Interact., 3(1):66–106, March 1996.

[66] Martina Angela Sasse and Chris W. Johnson. Human-computer Interaction, INTER-
ACT ’99: IFIP TC.13 International Conference on Human-Computer Interaction, 30th
August -3rd September 1999, Edinburgh, UK. IOS Press, 1999.

Bibliography 159

[67] Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans. Graph.,
5(2):79–109, April 1986.

[68] Oliver Schmid, Agnes Lisowska Masson, and Béat Hirsbrunner. Collaborative web brows-
ing: multiple users, multiple pages, concurrent access, one display. In Proceedings of the
4th ACM SIGCHI symposium on Engineering interactive computing systems, EICS ’12,
page 141–150, New York, NY, USA, 2012. ACM.

[69] Günter Schäfer. Security in Fixed and Wireless Networks: An Introduction to Securing
Data Communications. John Wiley & Sons, March 2004.

[70] Bin Shao, Du Li, Tun Lu, and Ning Gu. An operational transformation based synchro-
nization protocol for web 2.0 applications. In Proceedings of the ACM 2011 conference
on Computer supported cooperative work, CSCW ’11, page 563–572, New York, NY,
USA, 2011. ACM.

[71] Haifeng Shen and Chengzheng Sun. Achieving data consistency by contextualization in
web-based collaborative applications. ACM Trans. Internet Technol., 10(4):13:1–13:37,
March 2011.

[72] Thomas Springer, Daniel Schuster, Iris Braun, Jordan Janeiro, Markus Endler, and
Antonio A. F. Loureiro. A flexible architecture for mobile collaboration services. In
Proceedings of the ACM/IFIP/USENIX Middleware ’08 Conference Companion, Com-
panion ’08, page 118–120, New York, NY, USA, 2008. ACM.

[73] William Stallings. Cryptography and Network Security: Principles and Practice. Prentice
Hall, 1999.

[74] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS revised: early
experiences with multiuser interfaces. ACM Trans. Inf. Syst., 5(2):147–167, April 1987.

[75] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications. Springer,
October 2005.

[76] Chengzheng Sun and Clarence Ellis. Operational transformation in real-time group ed-
itors: issues, algorithms, and achievements. In Proceedings of the 1998 ACM conference
on Computer supported cooperative work, CSCW ’98, page 59–68, New York, NY, USA,
1998. ACM.

[77] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2 edition, October 2006.

[78] Anthony Tang, Carman Neustaedter, and Saul Greenberg. VideoArms: embodiments
in mixed presence groupware. In In Proc. of BCS HCI, page 85–102, 2006.

[79] Jenifer Tidwell. Designing Interfaces. O’Reilly Media, Inc., December 2010.

Bibliography 160

[80] Edward Tse and Saul Greenberg. Rapidly prototyping single display groupware through
the SDGToolkit. In Proceedings of the fifth conference on Australasian user interface -
Volume 28, AUIC ’04, page 101–110, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

[81] Paulo Veríssimo and Luís Rodrigues. Distributed Systems for System Architects.
Springer, 2001.

[82] Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maher Suleiman. Copies convergence
in a distributed real-time collaborative environment. In In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW’00, page 171–180, 2000.

[83] Pedro G. Villanueva, José A. Gallud, and Ricardo Tesoriero. WallShare: a multi-pointer
system for portable devices. In Proceedings of the International Conference on Advanced
Visual Interfaces, AVI ’10, page 416–416, New York, NY, USA, 2010. ACM.

[84] James R. Wallace, Stacey D. Scott, Taryn Stutz, Tricia Enns, and Kori Inkpen. Investi-
gating teamwork and taskwork in single- and multi-display groupware systems. Personal
Ubiquitous Comput., 13(8):569–581, November 2009.

[85] Jean Walrand and Pravin Varaiya. High-Performance Communication Networks. Mor-
gan Kaufmann, October 1999.

[86] Weigang Wang. Powermeeting on common ground: web based synchronous groupware
with rich user experience. In Proceedings of the hypertext 2008 workshop on Collaboration
and collective intelligence, WebScience ’08, page 35–39, New York, NY, USA, 2008.
ACM.

[87] Yao Wang and Julita Vassileva. Trust and reputation model in peer-to-peer networks.
In Proceedings of the 3rd International Conference on Peer-to-Peer Computing, P2P ’03,
page 150–, Washington, DC, USA, 2003. IEEE Computer Society.

[88] Daniel Wigdor, Hao Jiang, Clifton Forlines, Michelle Borkin, and Chia Shen. WeSpace:
the design development and deployment of a walk-up and share multi-surface visual
collaboration system. In Proceedings of the 27th international conference on Human
factors in computing systems, CHI ’09, page 1237–1246, New York, NY, USA, 2009.
ACM.

[89] J. Xu, J. Zhang, T. Harvey, and J. Young. A survey of asynchronous collaboration tools.
Information Technology Journal, 7(8):1182–1187, 2008.

[90] Jiang-ming Yang, Hai-xun Wang, Yi-ming Liu, and Chun-song Wang. Lock-free consis-
tency control for web 2.0 applications. In In Proc. 17th Intl. Conference on World Wide
Web (WWW, page 725–734, 2008.

Bibliography 161

[91] Jin Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup development.
IEEE Internet Computing, 12(5):44 –52, October 2008.

[92] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and re-
search challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

[93] Philip R. Zimmermann. The official PGP user’s guide. May 1995.

Referenced Web Resources

[94] Appcelerator Titanium. http://www.appcelerator.com (accessed December 23,
2012).

[95] The Atmosphere Framework. https://github.com/Atmosphere/atmosphere (ac-
cessed November 02, 2012).

[96] Wikimedia Commons CSCW matrix. http://en.wikipedia.org/wiki/File:

Cscwmatrix.jpg (accessed December 23, 2012).

[97] ECMAScript. http://www.ecmascript.org/ (accessed September 27, 2012).

[98] The GNU Compiler Collection (GCC) web page. http://gcc.gnu.org/ (accessed
September 27, 2012).

[99] Website for the GIMP. http://www.gimp.org/ (accessed September 13, 2012).

[100] Website of the GTK+ project. http://www.gtk.org/ (accessed September 13, 2012).

[101] Website for the Integration of MPX into GTK+. https://live.gnome.org/GTK+/MPX
(accessed September 13, 2012).

[102] Deferred Binding in the Google Web Toolkit (GWT). https://developers.google.

com/web-toolkit/doc/latest/DevGuideCodingBasicsDeferred (accessed Septem-
ber 27, 2012).

[103] GWT docs: Declarative Layout with UI Binder. https://developers.google.com/

web-toolkit/doc/latest/DevGuideUiBinder (accessed November 02, 2012).

[104] HTTP/1.1 Specification web page. http://www.w3.org/Protocols/rfc2616/

rfc2616.html (accessed September 22, 2012).

[105] I-Jetty: webserver for the android mobile platform. http://code.google.com/p/

i-jetty/ (accessed December 23, 2012).

162

http://www.appcelerator.com
https://github.com/Atmosphere/atmosphere
http://en.wikipedia.org/wiki/File:Cscwmatrix.jpg
http://en.wikipedia.org/wiki/File:Cscwmatrix.jpg
http://www.ecmascript.org/
http://gcc.gnu.org/
http://www.gimp.org/
http://www.gtk.org/
https://live.gnome.org/GTK+/MPX
https://developers.google.com/web-toolkit/doc/latest/DevGuideCodingBasicsDeferred
https://developers.google.com/web-toolkit/doc/latest/DevGuideCodingBasicsDeferred
https://developers.google.com/web-toolkit/doc/latest/DevGuideUiBinder
https://developers.google.com/web-toolkit/doc/latest/DevGuideUiBinder
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://code.google.com/p/i-jetty/
http://code.google.com/p/i-jetty/

Referenced Web Resources 163

[106] Java web page. http://www.oracle.com/technetwork/java/javase/overview/

index.html (accessed September 27, 2012).

[107] Java Mobile Edition (ME) web page. http://www.oracle.com/technetwork/java/

javame/index.html (accessed September 27, 2012).

[108] Java Performance Documentation web page. http://www.oracle.com/technetwork/
java/performance-138178.html (accessed September 23, 2012).

[109] JSON-P. http://json-p.org/ (accessed December 26, 2012).

[110] Maven. http://maven.apache.org/ (accessed December 09, 2012).

[111] Website for the Windows MultiPoint Mouse SDK. http://www.microsoft.com/

multipoint/mouse-sdk/ (accessed September 13, 2012).

[112] Pointer Events Specification. http://www.w3.org/Submission/pointer-events/ (ac-
cessed December 13, 2012).

[113] OSGi Alliance. http://www.osgi.org/ (accessed December 23, 2012).

[114] The Perl Programming Language. http://www.perl.org/ (accessed September 27,
2012).

[115] PhoneGap. http://phonegap.com/ (accessed October 07, 2012).

[116] Python Programming Language. http://www.python.org/ (accessed September 27,
2012).

[117] RAW Input web page. http://msdn.microsoft.com/en-us/library/windows/

desktop/ms645536(v=vs.85).aspx (accessed September 22, 2012).

[118] Ruby Programming Language. http://www.ruby-lang.org/ (accessed September 27,
2012).

[119] Smartphones ownership in Switzerland in March 2012. http://www.

comparis.ch/~/media/files/mediencorner/medienmitteilungen/2012/telecom/

verbreitung-smartphone.pdf (accessed December 26, 2012).

[120] Smartphones ownership in USA in September 2012. http://pewinternet.org/

Reports/2012/Smartphone-Update-Sept-2012/Findings.aspx (accessed December
26, 2012).

[121] Sunspider JavaScript Benchmark. http://www.webkit.org/perf/sunspider/

sunspider.html (accessed December 22, 2012).

[122] Tcl Developmer Site. http://www.tcl.tk/ (accessed September 27, 2012).

[123] TWICE on Github.com. http://olinux.github.com/twice/ (accessed December 23,
2012).

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/performance-138178.html
http://www.oracle.com/technetwork/java/performance-138178.html
http://json-p.org/
http://maven.apache.org/
http://www.microsoft.com/multipoint/mouse-sdk/
http://www.microsoft.com/multipoint/mouse-sdk/
http://www.w3.org/Submission/pointer-events/
http://www.osgi.org/
http://www.perl.org/
http://phonegap.com/
http://www.python.org/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms645536(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms645536(v=vs.85).aspx
http://www.ruby-lang.org/
http://www.comparis.ch/~/media/files/mediencorner/medienmitteilungen/2012/telecom/verbreitung-smartphone.pdf
http://www.comparis.ch/~/media/files/mediencorner/medienmitteilungen/2012/telecom/verbreitung-smartphone.pdf
http://www.comparis.ch/~/media/files/mediencorner/medienmitteilungen/2012/telecom/verbreitung-smartphone.pdf
http://pewinternet.org/Reports/2012/Smartphone-Update-Sept-2012/Findings.aspx
http://pewinternet.org/Reports/2012/Smartphone-Update-Sept-2012/Findings.aspx
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.tcl.tk/
http://olinux.github.com/twice/

Referenced Web Resources 164

[124] Website of WebRTC. http://www.webrtc.org/ (accessed January 16, 2012).

[125] Website of the X.Org project. http://www.x.org/ (accessed September 13, 2012).

http://www.webrtc.org/
http://www.x.org/

Curriculum Vitae

Oliver Schmid

Personal information

Date of birth November 22, 1984
Nationality Swiss
Languages German (mother tounge), English, French

Academic qualifications

2009 - today PhD candidate in Computer Science, PAI Research Group, University of
Fribourg

2006 - 2009 MA in Information Management, University of Fribourg. Thesis: “In-
teractive learning applications within a MHP environment”, Supervisor:
Prof. Dr. Béat Hirsbrunner

2003 - 2006 BSc in Educational Sciences and Information Management, University
of Fribourg. Thesis: “Computergestützte Instruktion – Cognitive Appren-
ticeship und Anchored Instruction im Vergleich”, Supervisor: Prof. Dr.
Dr. h.c. Fritz Oser

165

Referenced Web Resources 166

Professional experience

2009 - today Work as Software Engineer (60-70%) at Puzzle ITC in Bern

2005 - 2012 Department of Educational Sciences of the University of Fribourg: De-
velopment of a media based diagnose software for further education for
teachers

2007 Internship for the studies in Information Management at UBS Invest-
ment Bank as Junior Software Developer. Tasks: Extension of a
JavaScript web application, ORM mapping (Hibernate, Ibatis) for data
base access through stored procedures only, distributed caching (RMI,
Jgroups, JMS, Terracotta), JMail, JMS-notification (Tibco Rendezvous)
in Spring, extension of Struts application for the validation and process-
ing of XML

2005 Internship for the studies in Educational Sciences at Lehrwerkstätte
Bern, creation and integration of a virtual communication- and edu-
cation platform

2000 - 2009 Freelancer: PC support, web design, small software engineering projects

List of publications

• Schmid, O., A. Lisowska Masson, and B. Hirsbrunner, "Collaborative Web Browsing:
Multiple Users, Multiple Pages, Concurrent Access, One Display", 4th ACM SIGCHI
symposium on Engineering interactive computing systems (EICS ’12), Copenhagen,
Denmark, 06/2012

• Schmid, O., and B. Hirsbrunner, "Middleware for distributed collaborative ad-hoc envi-
ronments", Work in Progress session at PerCom 2012 (WIP of PerCom 2012), Lugano,
Switzerland, 2012.

• Bowie, M., O. Schmid, A. Lisowska Masson, and B. Hirsbrunner, "Web-Based Multi-
pointer Interaction on Shared Displays.", Proceedings of the Interactive Papers session
of the ACM Conference on Computer Supported Collaborative work (CSCW 2011).,
March, 2011.

Referenced Web Resources 167

• Schmid, O., A. Lisowska, M. Courant, and B. Hirsbrunner, "Robust and reliable so-
lutions for middle cost large multi-touch displays.", Proceedings of the workshop on
Engineering Patterns for Multi-Touch Interfaces 2010 at the ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems (EICS 2010), June, 2010.

• Schmid, O., M. Khadraoui, and B. Hirsbrunner, "Video indexation by subtitles and
its usage within the language learning process", 13th IBIMA conference on Knowledge
Management and Innovation in Advancing Economies, November, 2009.

	Acknowledgements
	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	List of Code Extracts
	Introduction
	State of the art / Related work
	Computer supported collaboration
	General challenges
	Types of collaborative systems
	Ad-hoc vs. infrastructure-based collaboration
	Devices involved
	Problem space

	System architecture of distributed systems
	System dynamics
	System availability
	System scalability

	Platform- and device-heterogeneity
	Eventing and synchronization
	Security and privacy
	Interaction with shared devices
	Aspects of user experience
	User awareness
	Distribution of user interfaces

	Toolkits and solutions for collaborative applications
	Multi-user / multi-device support
	Extension of legacy apps
	Communication
	Distribution of user interfaces
	General toolkits

	Discussion

	Specification
	Context of the work
	Requirements
	Technology
	Software architecture
	Basic functionalities

	Choice of technology
	Priorization of requirements
	Technology candidates
	Technology decision
	Implications and challenges

	System architecture
	Overview
	Work load distribution
	Server side functionalities
	Client side functionalities
	Communication
	Set-up

	Discussion

	Toolkit
	General concepts
	Modules
	Coding conventions and concepts

	Basic functionalities
	Distributed eventing mechanism
	Security
	Device grouping
	Layouting
	Multi-user support
	Easy access

	Software modules
	Drag and drop
	Remote mouse controller
	Remote keyboard
	Extended widgets for multi-user and multi-device contexts
	Collaborative web browsing

	Use of the toolkit in practice
	Module development

	Comparison with standard GWT
	Discussion

	Evaluation and real world use
	Technical evaluation
	Performance
	Heterogeneity
	Scalability

	In-use evaluation
	Initial experiments
	A Fitt of distraction
	Distributed user interface experiments
	Computer supported brain storming
	Usability experiments
	Multi-Zoom

	A modular mindmap application
	The latest version of the mindmap application
	Non-integrated components
	Modularity in practice

	Real-world experiment: Use in an educational scenario
	Developer evaluation of the toolkit
	Discussion

	Conclusion
	Acronyms
	Resources and extended code extracts
	Website of the Project
	Bibliography
	Referenced Web Resources
	Curriculum Vitae

